rr {rchemo}R Documentation

Linear Ridge Regression

Description

Fitting linear ridge regression models (RR) (Hoerl & Kennard 1970, Hastie & Tibshirani 2004, Hastie et al 2009, Cule & De Iorio 2012) by SVD factorization.

Usage


rr(X, Y, weights = NULL, lb = 1e-2)

## S3 method for class 'Rr'
coef(object, ..., lb = NULL)  

## S3 method for class 'Rr'
predict(object, X, ..., lb = NULL)  

Arguments

X

For the main function: Training X-data (n, p). — For the auxiliary functions: New X-data (m, p) to consider.

Y

Training Y-data (n, q).

weights

Weights (n, 1) to apply to the training observations. Internally, weights are "normalized" to sum to 1. Default to NULL (weights are set to 1 / n).

lb

A value of regularization parameter lambda. If lb = 0, a pseudo-inverse is used.

object

For the auxiliary functions: A fitted model, output of a call to the main function.

...

— For the auxiliary functions: Optional arguments. Not used.

Value

For rr:

V

eigenvector matrix of the correlation matrix (n,n).

TtDY

intermediate output.

sv

singular values of the matrix (1,n).

lb

value of regularization parameter lambda.

xmeans

the centering vector of X (p,1).

ymeans

the centering vector of Y (q,1).

weights

the weights vector of X-variables (p,1).

For coef.Rr:

int

matrix (1,nlv) with the intercepts

B

matrix (n,nlv) with the coefficients

df

model complexity (number of degrees of freedom)

For predict.Rr:

pred

A list of matrices (m, q) with the Y predicted values for the new X-data

References

Cule, E., De Iorio, M., 2012. A semi-automatic method to guide the choice of ridge parameter in ridge regression. arXiv:1205.0686.

Hastie, T., Tibshirani, R., 2004. Efficient quadratic regularization for expression arrays. Biostatistics 5, 329-340. https://doi.org/10.1093/biostatistics/kxh010

Hastie, T., Tibshirani, R., Friedman, J., 2009. The elements of statistical learning: data mining, inference, and prediction, 2nd ed. Springer, New York.

Hoerl, A.E., Kennard, R.W., 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems. Technometrics 12, 55-67. https://doi.org/10.1080/00401706.1970.10488634

Wu, W., Massart, D.L., de Jong, S., 1997. The kernel PCA algorithms for wide data. Part I: Theory and algorithms. Chemometrics and Intelligent Laboratory Systems 36, 165-172. https://doi.org/10.1016/S0169-7439(97)00010-5

Examples


n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Ytrain <- cbind(y1 = ytrain, y2 = 100 * ytrain)
m <- 3
Xtest <- Xtrain[1:m, , drop = FALSE] 
Ytest <- Ytrain[1:m, , drop = FALSE] ; ytest <- Ytest[1:m, 1]

lb <- .1
fm <- rr(Xtrain, Ytrain, lb = lb)
coef(fm)
coef(fm, lb = .8)
predict(fm, Xtest)
predict(fm, Xtest, lb = c(0.1, .8))

pred <- predict(fm, Xtest)$pred
msep(pred, Ytest)


[Package rchemo version 0.1-1 Index]