odis {rchemo} | R Documentation |
Orthogonal distances from a PCA or PLS score space
Description
odis
calculates the orthogonal distances (OD = "X-residuals") for a PCA or PLS model. OD is the Euclidean distance of a row observation to its projection to the score plan (see e.g. Hubert et al. 2005, Van Branden & Hubert 2005, p. 66; Varmuza & Filzmoser, 2009, p. 79).
A distance cutoff is computed using a moment estimation of the parameters of a Chi-squared distribution for OD^2 (see Nomikos & MacGregor 1995, and Pomerantzev 2008). In the function output, column dstand
is a standardized distance defined as OD / cutoff
. A value dstand > 1
can be considered as extreme.
The cutoff for detecting extreme OD values is computed using a moment estimation of a Chi-squared distrbution for the squared distance.
Usage
odis(
object, Xtrain, X = NULL,
nlv = NULL,
rob = TRUE, alpha = .01
)
Arguments
object |
A fitted model, output of a call to a fitting function. |
Xtrain |
Training X-data that was used to fit the model. |
X |
New X-data. |
nlv |
Number of components (PCs or LVs) to consider. |
rob |
Logical. If |
alpha |
Risk- |
Value
res.train |
matrix with distance and a standardized distance calculated for Xtrain. |
res |
matrix with distance and a standardized distance calculated for X. |
cutoff |
distance cutoff computed using a moment estimation of the parameters of a Chi-squared distribution for OD^2. |
References
M. Hubert, P. J. Rousseeuw, K. Vanden Branden (2005). ROBPCA: a new approach to robust principal components analysis. Technometrics, 47, 64-79.
Nomikos, P., MacGregor, J.F., 1995. Multivariate SPC Charts for Monitoring Batch Processes. null 37, 41-59. https://doi.org/10.1080/00401706.1995.10485888
Pomerantsev, A.L., 2008. Acceptance areas for multivariate classification derived by projection methods. Journal of Chemometrics 22, 601-609. https://doi.org/10.1002/cem.1147
K. Vanden Branden, M. Hubert (2005). Robuts classification in high dimension based on the SIMCA method. Chem. Lab. Int. Syst, 79, 10-21.
K. Varmuza, P. Filzmoser (2009). Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton.
Examples
n <- 6 ; p <- 4
Xtrain <- matrix(rnorm(n * p), ncol = p)
ytrain <- rnorm(n)
Xtest <- Xtrain[1:3, , drop = FALSE]
nlv <- 3
fm <- pcasvd(Xtrain, nlv = nlv)
odis(fm, Xtrain)
odis(fm, Xtrain, nlv = 2)
odis(fm, Xtrain, X = Xtest, nlv = 2)