eposvd {rchemo} | R Documentation |
External parameter orthogonalization (EPO)
Description
Pre-processing a X-dataset by external parameter orthogonalization (EPO; Roger et al 2003). The objective is to remove from a dataset X (n, p)
some "detrimental" information (e.g. humidity effect) represented by a dataset D (m, p)
.
EPO consists in orthogonalizing the row observations of X
to the detrimental sub-space defined by the first nlv
non-centered PCA loadings vectors of D
.
Function eposvd
uses a SVD factorization of D
and returns M (p, p)
the orthogonalization matrix, and P
the considered loading vectors of D
.
Usage
eposvd(D, nlv)
Arguments
D |
A dataset |
nlv |
The number of first loadings vectors of |
Details
The data corrected from the detrimental information D
can be computed by Xcorrected = X * M
.
Rows of the corrected matrix Xcorr are orthogonal to the loadings vectors (columns of P): Xcorr * P
.
Value
M |
orthogonalization matrix. |
P |
detrimental directions matrix (p, nlv) (loadings of D = columns of P). |
References
Roger, J.-M., Chauchard, F., Bellon-Maurel, V., 2003. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems 66, 191-204. https://doi.org/10.1016/S0169-7439(03)00051-0
Roger, J.-M., Boulet, J.-C., 2018. A review of orthogonal projections for calibration. Journal of Chemometrics 32, e3045. https://doi.org/10.1002/cem.3045
Examples
n <- 4 ; p <- 8
X <- matrix(rnorm(n * p), ncol = p)
m <- 3
D <- matrix(rnorm(m * p), ncol = p)
nlv <- 2
res <- eposvd(D, nlv = nlv)
M <- res$M
P <- res$P
M
P