eposvd {rchemo}R Documentation

External parameter orthogonalization (EPO)

Description

Pre-processing a X-dataset by external parameter orthogonalization (EPO; Roger et al 2003). The objective is to remove from a dataset X (n,p)(n, p) some "detrimental" information (e.g. humidity effect) represented by a dataset D(m,p)D (m, p).

EPO consists in orthogonalizing the row observations of XX to the detrimental sub-space defined by the first nlvnlv non-centered PCA loadings vectors of DD.

Function eposvd uses a SVD factorization of DD and returns M(p,p)M (p, p) the orthogonalization matrix, and PP the considered loading vectors of DD.

Usage

eposvd(D, nlv)

Arguments

D

A dataset (m,p)(m, p) containing detrimental information.

nlv

The number of first loadings vectors of DD considered for the orthogonalization.

Details

The data corrected from the detrimental information DD can be computed by Xcorrected=XMXcorrected = X * M. Rows of the corrected matrix Xcorr are orthogonal to the loadings vectors (columns of P): XcorrPXcorr * P.

Value

M

orthogonalization matrix.

P

detrimental directions matrix (p, nlv) (loadings of D = columns of P).

References

Roger, J.-M., Chauchard, F., Bellon-Maurel, V., 2003. EPO-PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemometrics and Intelligent Laboratory Systems 66, 191-204. https://doi.org/10.1016/S0169-7439(03)00051-0

Roger, J.-M., Boulet, J.-C., 2018. A review of orthogonal projections for calibration. Journal of Chemometrics 32, e3045. https://doi.org/10.1002/cem.3045

Examples


n <- 4 ; p <- 8 
X <- matrix(rnorm(n * p), ncol = p)
m <- 3
D <- matrix(rnorm(m * p), ncol = p)

nlv <- 2
res <- eposvd(D, nlv = nlv)
M <- res$M
P <- res$P
M
P


[Package rchemo version 0.1-2 Index]