A C D E F G H I J K L M N P R S T U V W Z misc
elliptic-package | Weierstrass and Jacobi Elliptic Functions |
amn | matrix a on page 637 |
as.primitive | Converts basic periods to a primitive pair |
cc | Jacobi form of the elliptic functions |
cd | Jacobi form of the elliptic functions |
ck | Coefficients of Laurent expansion of Weierstrass P function |
cn | Jacobi form of the elliptic functions |
congruence | Solves mx+by=1 for x and y |
coqueraux | Fast, conceptually simple, iterative scheme for Weierstrass P functions |
cs | Jacobi form of the elliptic functions |
dc | Jacobi form of the elliptic functions |
dd | Jacobi form of the elliptic functions |
divisor | Number theoretic functions |
dn | Jacobi form of the elliptic functions |
ds | Jacobi form of the elliptic functions |
e16.1.1 | quarter period K |
e16.27.1 | Jacobi theta functions 1-4 |
e16.27.2 | Jacobi theta functions 1-4 |
e16.27.3 | Jacobi theta functions 1-4 |
e16.27.4 | Jacobi theta functions 1-4 |
e16.28.1 | Numerical verification of equations 16.28.1 to 16.28.5 |
e16.28.2 | Numerical verification of equations 16.28.1 to 16.28.5 |
e16.28.3 | Numerical verification of equations 16.28.1 to 16.28.5 |
e16.28.4 | Numerical verification of equations 16.28.1 to 16.28.5 |
e16.28.5 | Numerical verification of equations 16.28.1 to 16.28.5 |
e16.28.6 | Derivative of theta1 |
e16.31.1 | Jacobi theta functions 1-4 |
e16.31.2 | Jacobi theta functions 1-4 |
e16.31.3 | Jacobi theta functions 1-4 |
e16.31.4 | Jacobi theta functions 1-4 |
e16.36.3 | Jacobi form of the elliptic functions |
e16.36.6 | Neville's form for the theta functions |
e16.36.6a | Neville's form for the theta functions |
e16.36.6b | Neville's form for the theta functions |
e16.36.7 | Neville's form for the theta functions |
e16.36.7a | Neville's form for the theta functions |
e16.36.7b | Neville's form for the theta functions |
e16.37.1 | Neville's form for the theta functions |
e16.37.2 | Neville's form for the theta functions |
e16.37.3 | Neville's form for the theta functions |
e16.37.4 | Neville's form for the theta functions |
e16.38.1 | Neville's form for the theta functions |
e16.38.2 | Neville's form for the theta functions |
e16.38.3 | Neville's form for the theta functions |
e16.38.4 | Neville's form for the theta functions |
e18.1.1 | Calculates the invariants g2 and g3 |
e18.10.1 | Weierstrass P and related functions |
e18.10.10 | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.10a | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.10b | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.11 | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.11a | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.11b | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.12 | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.12a | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.12b | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.2 | Weierstrass P and related functions |
e18.10.3 | Weierstrass P and related functions |
e18.10.4 | Weierstrass P and related functions |
e18.10.5 | Weierstrass P and related functions |
e18.10.6 | Weierstrass P and related functions |
e18.10.7 | Weierstrass P and related functions |
e18.10.9 | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.9a | Numerical checks of equations 18.10.9-11, page 650 |
e18.10.9b | Numerical checks of equations 18.10.9-11, page 650 |
e18.3.1 | Calculate e1, e2, e3 from the invariants |
e18.3.3 | Parameters for Weierstrass's P function |
e18.3.37 | Parameters for Weierstrass's P function |
e18.3.38 | Parameters for Weierstrass's P function |
e18.3.39 | Parameters for Weierstrass's P function |
e18.3.5 | Parameters for Weierstrass's P function |
e18.3.7 | Calculate e1, e2, e3 from the invariants |
e18.3.8 | Calculate e1, e2, e3 from the invariants |
e18.5.1 | Laurent series for elliptic and related functions |
e18.5.16 | Coefficients of Laurent expansion of Weierstrass P function |
e18.5.2 | Coefficients of Laurent expansion of Weierstrass P function |
e18.5.3 | Coefficients of Laurent expansion of Weierstrass P function |
e18.5.4 | Laurent series for elliptic and related functions |
e18.5.5 | Laurent series for elliptic and related functions |
e18.5.6 | Laurent series for elliptic and related functions |
e18.7.4 | Parameters for Weierstrass's P function |
e18.7.5 | Parameters for Weierstrass's P function |
e18.7.7 | Parameters for Weierstrass's P function |
e18f.5.3 | Laurent series for elliptic and related functions |
e1e2e3 | Calculate e1, e2, e3 from the invariants |
eee.cardano | Calculate e1, e2, e3 from the invariants |
elliptic | Weierstrass and Jacobi Elliptic Functions |
equianharmonic | Special cases of the Weierstrass elliptic function |
eta | Dedekind's eta function |
eta.series | Dedekind's eta function |
factorize | Number theoretic functions |
farey | Farey sequences |
fpp | Fundamental period parallelogram |
g.fun | Calculates the invariants g2 and g3 |
g2.fun | Calculates the invariants g2 and g3 |
g2.fun.direct | Calculates the invariants g2 and g3 |
g2.fun.divisor | Calculates the invariants g2 and g3 |
g2.fun.fixed | Calculates the invariants g2 and g3 |
g2.fun.lambert | Calculates the invariants g2 and g3 |
g2.fun.vectorized | Calculates the invariants g2 and g3 |
g3.fun | Calculates the invariants g2 and g3 |
g3.fun.direct | Calculates the invariants g2 and g3 |
g3.fun.divisor | Calculates the invariants g2 and g3 |
g3.fun.fixed | Calculates the invariants g2 and g3 |
g3.fun.lambert | Calculates the invariants g2 and g3 |
g3.fun.vectorized | Calculates the invariants g2 and g3 |
GP | Wrappers for PARI functions |
Gp | Wrappers for PARI functions |
gp | Wrappers for PARI functions |
H | Jacobi theta functions 1-4 |
H1 | Jacobi theta functions 1-4 |
half.periods | Calculates half periods in terms of e |
Im<- | Manipulate real or imaginary components of an object |
integrate.contour | Complex integration |
integrate.segments | Complex integration |
is.primitive | Converts basic periods to a primitive pair |
J | Various modular functions |
K.fun | quarter period K |
lambda | Various modular functions |
latplot | Plots a lattice of periods on the complex plane |
lattice | Lattice of complex numbers |
lemniscatic | Special cases of the Weierstrass elliptic function |
limit | Limit the magnitude of elements of a vector |
liouville | Number theoretic functions |
massage | Massages numbers near the real line to be real |
mn | Fundamental period parallelogram |
mob | Moebius transformations |
mobius | Number theoretic functions |
myintegrate | Complex integration |
nc | Jacobi form of the elliptic functions |
nd | Jacobi form of the elliptic functions |
near.match | Are two vectors close to one another? |
Newton_Raphson | Newton Raphson iteration to find roots of equations |
Newton_raphson | Newton Raphson iteration to find roots of equations |
newton_Raphson | Newton Raphson iteration to find roots of equations |
newton_raphson | Newton Raphson iteration to find roots of equations |
nn | Jacobi form of the elliptic functions |
nome | Nome in terms of m or k |
nome.k | Nome in terms of m or k |
ns | Jacobi form of the elliptic functions |
P | Weierstrass P and related functions |
P.laurent | Laurent series for elliptic and related functions |
P.pari | Wrappers for PARI functions |
p1.tau | Does the right thing when calling g2.fun() and g3.fun() |
parameters | Parameters for Weierstrass's P function |
PARI | Wrappers for PARI functions |
pari | Wrappers for PARI functions |
Pdash | Weierstrass P and related functions |
Pdash.laurent | Laurent series for elliptic and related functions |
primes | Number theoretic functions |
pseudolemniscatic | Special cases of the Weierstrass elliptic function |
Re<- | Manipulate real or imaginary components of an object |
residue | Complex integration |
sc | Jacobi form of the elliptic functions |
sd | Jacobi form of the elliptic functions |
sigma | Weierstrass P and related functions |
sigma.laurent | Laurent series for elliptic and related functions |
sigmadash.laurent | Laurent series for elliptic and related functions |
sn | Jacobi form of the elliptic functions |
sqrti | Generalized square root |
ss | Jacobi form of the elliptic functions |
Theta | Jacobi theta functions 1-4 |
theta | Jacobi theta functions 1-4 |
theta.00 | Jacobi theta functions 1-4 |
theta.01 | Jacobi theta functions 1-4 |
theta.10 | Jacobi theta functions 1-4 |
theta.11 | Jacobi theta functions 1-4 |
theta.c | Neville's form for the theta functions |
theta.d | Neville's form for the theta functions |
theta.n | Neville's form for the theta functions |
theta.neville | Neville's form for the theta functions |
theta.s | Neville's form for the theta functions |
Theta1 | Jacobi theta functions 1-4 |
theta1 | Jacobi theta functions 1-4 |
theta1.dash.zero | Derivative of theta1 |
theta1.dash.zero.q | Derivative of theta1 |
theta1dash | Derivatives of theta functions |
theta1dashdash | Derivatives of theta functions |
theta1dashdashdash | Derivatives of theta functions |
theta2 | Jacobi theta functions 1-4 |
theta3 | Jacobi theta functions 1-4 |
theta4 | Jacobi theta functions 1-4 |
totient | Number theoretic functions |
unimodular | Unimodular matrices |
unimodularity | Unimodular matrices |
view | Visualization of complex functions |
WeierstrassP | Weierstrass P and related functions |
zeta | Weierstrass P and related functions |
zeta.laurent | Laurent series for elliptic and related functions |
%mob% | Moebius transformations |
18.5.7 | matrix a on page 637 |
18.5.8 | matrix a on page 637 |