ck {elliptic} | R Documentation |
Coefficients of Laurent expansion of Weierstrass P function
Description
Calculates the coefficients of the Laurent expansion of the
Weierstrass \wp
function in terms of the invariants
Usage
ck(g, n=20)
Arguments
g |
The invariants: a vector of length two with |
n |
length of series |
Details
Calculates the series c_k
as per equation 18.5.3, p635.
Author(s)
Robin K. S. Hankin
See Also
Examples
#Verify 18.5.16, p636:
x <- ck(g=c(0.1+1.1i,4-0.63i))
14*x[2]*x[3]*(389*x[2]^3+369*x[3]^2)/3187041-x[11] #should be zero
# Now try a random example by comparing the default (theta function) method
# for P(z) with the Laurent expansion:
z <- 0.5-0.3i
g <- c(1.1-0.2i, 1+0.4i)
series <- ck(15,g=g)
1/z^2+sum(series*(z^2)^(0:14)) - P(z,g=g) #should be zero
[Package elliptic version 1.4-0 Index]