| elliptic-package {elliptic} | R Documentation |
Weierstrass and Jacobi Elliptic Functions
Description
A suite of elliptic and related functions including Weierstrass and Jacobi forms. Also includes various tools for manipulating and visualizing complex functions.
Details
The DESCRIPTION file:
| Package: | elliptic |
| Version: | 1.4-0 |
| Title: | Weierstrass and Jacobi Elliptic Functions |
| Authors@R: | person(given=c("Robin", "K. S."), family="Hankin", role = c("aut","cre"), email="hankin.robin@gmail.com", comment = c(ORCID = "0000-0001-5982-0415")) |
| Depends: | R (>= 2.5.0) |
| Imports: | MASS |
| Suggests: | emulator, calibrator (>= 1.2-8) |
| SystemRequirements: | pari/gp |
| Description: | A suite of elliptic and related functions including Weierstrass and Jacobi forms. Also includes various tools for manipulating and visualizing complex functions. |
| Maintainer: | Robin K. S. Hankin <hankin.robin@gmail.com> |
| License: | GPL-2 |
| URL: | https://github.com/RobinHankin/elliptic.git |
| BugReports: | https://github.com/RobinHankin/elliptic/issues |
| Author: | Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>) |
Index of help topics:
Im<- Manipulate real or imaginary components of an
object
J Various modular functions
K.fun quarter period K
P.laurent Laurent series for elliptic and related
functions
WeierstrassP Weierstrass P and related functions
amn matrix a on page 637
as.primitive Converts basic periods to a primitive pair
ck Coefficients of Laurent expansion of
Weierstrass P function
congruence Solves mx+by=1 for x and y
coqueraux Fast, conceptually simple, iterative scheme for
Weierstrass P functions
divisor Number theoretic functions
e16.28.1 Numerical verification of equations 16.28.1 to
16.28.5
e18.10.9 Numerical checks of equations 18.10.9-11, page
650
e1e2e3 Calculate e1, e2, e3 from the invariants
elliptic-package Weierstrass and Jacobi Elliptic Functions
equianharmonic Special cases of the Weierstrass elliptic
function
eta Dedekind's eta function
farey Farey sequences
fpp Fundamental period parallelogram
g.fun Calculates the invariants g2 and g3
half.periods Calculates half periods in terms of e
latplot Plots a lattice of periods on the complex plane
lattice Lattice of complex numbers
limit Limit the magnitude of elements of a vector
massage Massages numbers near the real line to be real
mob Moebius transformations
myintegrate Complex integration
near.match Are two vectors close to one another?
newton_raphson Newton Raphson iteration to find roots of
equations
nome Nome in terms of m or k
p1.tau Does the right thing when calling g2.fun() and
g3.fun()
parameters Parameters for Weierstrass's P function
pari Wrappers for PARI functions
sn Jacobi form of the elliptic functions
sqrti Generalized square root
theta Jacobi theta functions 1-4
theta.neville Neville's form for the theta functions
theta1.dash.zero Derivative of theta1
theta1dash Derivatives of theta functions
unimodular Unimodular matrices
view Visualization of complex functions
The primary function in package elliptic is P(): this
calculates the Weierstrass \wp function, and may take named
arguments that specify either the invariants g or half
periods Omega. The derivative is given by function Pdash
and the Weierstrass sigma and zeta functions are given by functions
sigma() and zeta() respectively; these are documented in
?P. Jacobi forms are documented under ?sn and modular
forms under ?J.
Notation follows Abramowitz and Stegun (1965) where possible, although
there only real invariants are considered; ?e1e2e3 and
?parameters give a more detailed discussion. Various equations
from AMS-55 are implemented (for fun); the functions are named after
their equation numbers in AMS-55; all references are to this work unless
otherwise indicated.
The package uses Jacobi's theta functions (?theta and
?theta.neville) where possible: they converge very quickly.
Various number-theoretic functions that are required for (eg) converting
a period pair to primitive form (?as.primitive) are implemented;
see ?divisor for a list.
The package also provides some tools for numerical verification of
complex analysis such as contour integration (?myintegrate) and
Newton-Raphson iteration for complex functions
(?newton_raphson).
Complex functions may be visualized using view(); this is
customizable but has an extensive set of built-in colourmaps.
Author(s)
NA
Maintainer: Robin K. S. Hankin <hankin.robin@gmail.com>
References
-
R. K. S. Hankin. Introducing Elliptic, an R package for Elliptic and Modular Functions. Journal of Statistical Software, Volume 15, Issue 7. February 2006.
-
M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions. New York, Dover.
-
K. Chandrasekharan 1985. Elliptic functions, Springer-Verlag.
-
E. T. Whittaker and G. N. Watson 1952. A Course of Modern Analysis, Cambridge University Press (fourth edition)
-
G. H. Hardy and E. M. Wright 1985. An introduction to the theory of numbers, Oxford University Press (fifth edition)
-
S. D. Panteliou and A. D. Dimarogonas and I. N .Katz 1996. Direct and inverse interpolation for Jacobian elliptic functions, zeta function of Jacobi and complete elliptic integrals of the second kind. Computers and Mathematics with Applications, volume 32, number 8, pp51-57
-
E. L. Wachspress 2000. Evaluating Elliptic functions and their inverses. Computers and Mathematics with Applications, volume 29, pp131-136
-
D. G. Vyridis and S. D. Panteliou and I. N. Katz 1999. An inverse convergence approach for arguments of Jacobian elliptic functions. Computers and Mathematics with Applications, volume 37, pp21-26
-
S. Paszkowski 1997. Fast convergent quasipower series for some elementary and special functions. Computers and Mathematics with Applications, volume 33, number 1/2, pp181-191
-
B. Thaller 1998. Visualization of complex functions, The Mathematica Journal, 7(2):163–180
-
J. Kotus and M. Urb\'anski 2003. Hausdorff dimension and Hausdorff measures of Julia sets of elliptic functions. Bulletin of the London Mathematical Society, volume 35, pp269-275
Examples
## Example 8, p666, RHS:
P(z=0.07 + 0.1i, g=c(10,2))
## Now a nice little plot of the zeta function:
x <- seq(from=-4,to=4,len=100)
z <- outer(x,1i*x,"+")
par(pty="s")
view(x,x,limit(zeta(z,c(1+1i,2-3i))),nlevels=3,scheme=1)
view(x,x,P(z*3,params=equianharmonic()),real=FALSE)
## Some number theory:
mobius(1:10)
plot(divisor(1:300,k=1),type="s",xlab="n",ylab="divisor(n,1)")
## Primitive periods:
as.primitive(c(3+4.01i , 7+10i))
as.primitive(c(3+4.01i , 7+10i),n=10) # Note difference
## Now some contour integration:
f <- function(z){1/z}
u <- function(x){exp(2i*pi*x)}
udash <- function(x){2i*pi*exp(2i*pi*x)}
integrate.contour(f,u,udash) - 2*pi*1i
x <- seq(from=-10,to=10,len=200)
z <- outer(x,1i*x,"+")
view(x,x,P(z,params=lemniscatic()),real=FALSE)
view(x,x,P(z,params=pseudolemniscatic()),real=FALSE)
view(x,x,P(z,params=equianharmonic()),real=FALSE)