sn {elliptic} | R Documentation |
Jacobi form of the elliptic functions
Description
Jacobian elliptic functions
Usage
ss(u,m, ...)
sc(u,m, ...)
sn(u,m, ...)
sd(u,m, ...)
cs(u,m, ...)
cc(u,m, ...)
cn(u,m, ...)
cd(u,m, ...)
ns(u,m, ...)
nc(u,m, ...)
nn(u,m, ...)
nd(u,m, ...)
ds(u,m, ...)
dc(u,m, ...)
dn(u,m, ...)
dd(u,m, ...)
Arguments
u |
Complex argument |
m |
Parameter |
... |
Extra arguments, such as |
Details
All sixteen Jacobi elliptic functions.
Author(s)
Robin K. S. Hankin
References
M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover
See Also
Examples
#Example 1, p579:
nc(1.9965,m=0.64)
# (some problem here)
# Example 2, p579:
dn(0.20,0.19)
# Example 3, p579:
dn(0.2,0.81)
# Example 4, p580:
cn(0.2,0.81)
# Example 5, p580:
dc(0.672,0.36)
# Example 6, p580:
Theta(0.6,m=0.36)
# Example 7, p581:
cs(0.53601,0.09)
# Example 8, p581:
sn(0.61802,0.5)
#Example 9, p581:
sn(0.61802,m=0.5)
#Example 11, p581:
cs(0.99391,m=0.5)
# (should be 0.75 exactly)
#and now a pretty picture:
n <- 300
K <- K.fun(1/2)
f <- function(z){1i*log((z-1.7+3i)*(z-1.7-3i)/(z+1-0.3i)/(z+1+0.3i))}
# f <- function(z){log((z-1.7+3i)/(z+1.7+3i)*(z+1-0.3i)/(z-1-0.3i))}
x <- seq(from=-K,to=K,len=n)
y <- seq(from=0,to=K,len=n)
z <- outer(x,1i*y,"+")
view(x, y, f(sn(z,m=1/2)), nlevels=44, imag.contour=TRUE,
real.cont=TRUE, code=1, drawlabels=FALSE,
main="Potential flow in a rectangle",axes=FALSE,xlab="",ylab="")
rect(-K,0,K,K,lwd=3)
[Package elliptic version 1.4-0 Index]