parameters {elliptic} | R Documentation |
Parameters for Weierstrass's P function
Description
Calculates the invariants g_2
and g_3
,
the e-values e_1,e_2,e_3
, and the half periods
\omega_1,\omega_2
, from any one of them.
Usage
parameters(Omega=NULL, g=NULL, description=NULL)
Arguments
Omega |
Vector of length two, containing the half
periods |
g |
Vector of length two:
|
description |
string containing “equianharmonic”, “lemniscatic”, or “pseudolemniscatic”, to specify one of A and S's special cases |
Value
Returns a list with the following items:
Omega |
A complex vector of length 2 giving the fundamental half
periods The relevant periods are made unique by the further requirement that
Note Different definitions exist for |
q |
The nome. Here,
|
g |
Complex vector of length 2 holding the invariants |
e |
Complex vector of length 3. Here
where Note that the |
Delta |
The quantity |
Eta |
Complex vector of length 3 often denoted
Note that the name of this element is capitalized to avoid confusion
with function |
is.AnS |
Boolean, with |
given |
character string indicating which parameter was supplied.
Currently, one of “ |
Author(s)
Robin K. S. Hankin
Examples
## Example 6, p665, LHS
parameters(g=c(10,2+0i))
## Example 7, p665, RHS
a <- parameters(g=c(7,6)) ; attach(a)
c(omega2=Omega[1],omega2dash=Omega[1]+Omega[2]*2)
## verify 18.3.37:
Eta[2]*Omega[1]-Eta[1]*Omega[2] #should be close to pi*1i/2
## from Omega to g and and back;
## following should be equivalentto c(1,1i):
parameters(g=parameters(Omega=c(1,1i))$g)$Omega