| half.periods {elliptic} | R Documentation |
Calculates half periods in terms of e
Description
Calculates half periods in terms of e
Usage
half.periods(ignore=NULL, e=NULL, g=NULL, primitive)
Arguments
e |
e |
g |
g |
ignore |
Formal argument present to ensure that |
primitive |
Boolean, with default |
Details
Parameter e=c(e1,e2,e3) are the values of the Weierstrass
\wp function at the half periods:
e_1=\wp(\omega_1)\qquad e_2=\wp(\omega_2)\qquad e_3=
\wp(\omega_3)
where
\omega_1+\omega_2+\omega_3=0.
Also, e is given by the roots of the cubic
equation x^3-g_2x-g_3=0, but the problem is
finding which root corresponds to which of the three elements of
e.
Value
Returns a pair of primitive half periods
Note
Function parameters() uses function half.periods()
internally, so do not use parameters()
to determine e.
Author(s)
Robin K. S. Hankin
References
M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions. New York, Dover.
Examples
half.periods(g=c(8,4)) ## Example 6, p665, LHS
u <- half.periods(g=c(-10,2))
massage(c(u[1]-u[2] , u[1]+u[2])) ## Example 6, p665, RHS
half.periods(g=c(10,2)) ## Example 7, p665, LHS
u <- half.periods(g=c(7,6))
massage(c(u[1],2*u[2]+u[1])) ## Example 7, p665, RHS
half.periods(g=c(1,1i, 1.1+1.4i))
half.periods(e=c(1,1i, 2, 1.1+1.4i))
g.fun(half.periods(g=c(8,4))) ## should be c(8,4)