| as.primitive {elliptic} | R Documentation |
Converts basic periods to a primitive pair
Description
Given a pair of basic periods, returns a primitive pair and (optionally) the unimodular transformation used.
Usage
as.primitive(p, n = 3, tol = 1e-05, give.answers = FALSE)
is.primitive(p, n = 3, tol = 1e-05)
Arguments
p |
Two element vector containing the two basic periods |
n |
Maximum magnitude of matrix entries considered |
tol |
Numerical tolerance used to determine reality of period ratios |
give.answers |
Boolean, with |
Details
Primitive periods are not unique. This function follows
Chandrasekharan and others (but not, of course, Abramowitz and Stegun)
in demanding that the real part of p1, and the
imaginary part of p2, are nonnegative.
Value
If give.answers is TRUE, return a list with components
M |
The unimodular matrix used |
p |
The pair of primitive periods |
mags |
The magnitudes of the primitive periods |
Note
Here, “unimodular” includes the case of determinant minus one.
Author(s)
Robin K. S. Hankin
References
K. Chandrasekharan 1985. Elliptic functions, Springer-Verlag
Examples
as.primitive(c(3+5i,2+3i))
as.primitive(c(3+5i,2+3i),n=5)
##Rounding error:
is.primitive(c(1,1i))
## Try
is.primitive(c(1,1.001i))