A B C D E F I K M O P R S T Z misc
| action | Action | 
| action.dal_transform | Action implementation for transform | 
| adjust_class_label | adjust categorical mapping | 
| adjust_data.frame | Adjust to data frame | 
| adjust_factor | adjust factors | 
| adjust_matrix | adjust to matrix | 
| adjust_ts_data | adjust 'ts_data' | 
| autoenc_encode | Autoencoder - Encode | 
| autoenc_encode_decode | Autoencoder - Encode | 
| Boston | Boston Housing Data (Regression) | 
| categ_mapping | Categorical mapping | 
| classification | classification | 
| cla_dtree | Decision Tree for classification | 
| cla_knn | K Nearest Neighbor Classification | 
| cla_majority | Majority Classification | 
| cla_mlp | MLP for classification | 
| cla_nb | Naive Bayes Classifier | 
| cla_rf | Random Forest for classification | 
| cla_svm | SVM for classification | 
| cla_tune | Classification Tune | 
| cluster | Cluster | 
| clusterer | Clusterer | 
| cluster_dbscan | DBSCAN | 
| cluster_kmeans | k-means | 
| cluster_pam | PAM | 
| clu_tune | Clustering Tune | 
| dal_base | Class dal_base | 
| dal_learner | DAL Learner | 
| dal_transform | DAL Transform | 
| dal_tune | DAL Tune | 
| data_sample | Data Sample | 
| do_fit | do fit for time series | 
| do_predict | do predict for time series | 
| dt_pca | PCA | 
| evaluate | evaluate | 
| fit | Fit | 
| fit.cla_tune | tune hyperparameters of ml model | 
| fit.cluster_dbscan | fit dbscan model | 
| fit_curvature_max | maximum curvature analysis | 
| fit_curvature_min | minimum curvature analysis | 
| inverse_transform | Inverse Transform | 
| k_fold | k-fold sampling | 
| minmax | min-max normalization | 
| MSE.ts | MSE | 
| outliers | Outliers | 
| plot_bar | plot bar graph | 
| plot_boxplot | plot boxplot | 
| plot_boxplot_class | plot boxplot per class | 
| plot_density | plot density | 
| plot_density_class | plot density per class | 
| plot_groupedbar | plot grouped bar | 
| plot_hist | plot histogram | 
| plot_lollipop | plot lollipop | 
| plot_pieplot | plot pie | 
| plot_points | plot points | 
| plot_radar | plot radar | 
| plot_scatter | scatter graph | 
| plot_series | plot series | 
| plot_stackedbar | plot stacked bar | 
| plot_ts | Plot a time series chart | 
| plot_ts_pred | Plot a time series chart | 
| predictor | DAL Predict | 
| R2.ts | R2 | 
| regression | Regression | 
| reg_dtree | Decision Tree for regression | 
| reg_knn | knn regression | 
| reg_mlp | MLP for regression | 
| reg_rf | Random Forest for regression | 
| reg_svm | SVM for regression | 
| reg_tune | Regression Tune | 
| sample_random | Sample Random | 
| sample_stratified | sample_stratified | 
| select_hyper | Selection hyper parameters | 
| select_hyper.cla_tune | selection of hyperparameters | 
| select_hyper.ts_tune | selection of hyperparameters (time series) | 
| set_params | Assign parameters | 
| set_params.default | Assign parameters | 
| sin_data | Time series example dataset | 
| sMAPE.ts | sMAPE | 
| smoothing | Smoothing | 
| smoothing_cluster | Smoothing by cluster | 
| smoothing_freq | Smoothing by Freq | 
| smoothing_inter | Smoothing by interval | 
| train_test | training and test | 
| train_test_from_folds | k-fold training and test partition object | 
| transform | Transform | 
| ts_arima | ARIMA | 
| ts_conv1d | Conv1D | 
| ts_data | ts_data | 
| ts_elm | ELM | 
| ts_head | ts_head | 
| ts_knn | knn time series prediction | 
| ts_lstm | LSTM | 
| ts_mlp | MLP | 
| ts_norm_an | Time Series Adaptive Normalization | 
| ts_norm_diff | Time Series Diff | 
| ts_norm_ean | Time Series Adaptive Normalization (Exponential Moving Average - EMA) | 
| ts_norm_gminmax | Time Series Global Min-Max | 
| ts_norm_swminmax | Time Series Sliding Window Min-Max | 
| ts_projection | Time Series Projection | 
| ts_reg | TSReg | 
| ts_regsw | TSRegSW | 
| ts_rf | Random Forest | 
| ts_sample | Time Series Sample | 
| ts_svm | SVM | 
| ts_tune | Time Series Tune | 
| zscore | z-score normalization | 
| [.ts_data | Extract a subset of a time series stored in an object |