cla_rf {daltoolbox} | R Documentation |
Random Forest for classification
Description
Creates a classification object that uses the Random Forest method It wraps the randomForest library.
Usage
cla_rf(attribute, slevels, nodesize = 5, ntree = 10, mtry = NULL)
Arguments
attribute |
attribute target to model building |
slevels |
possible values for the target classification |
nodesize |
node size |
ntree |
number of trees |
mtry |
number of attributes to build tree |
Value
obj
Examples
data(iris)
slevels <- levels(iris$Species)
model <- cla_rf("Species", slevels, ntree=5)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
[Package daltoolbox version 1.0.767 Index]