cla_mlp {daltoolbox} | R Documentation |
MLP for classification
Description
Creates a classification object that uses the Multi-Layer Perceptron (MLP) method. It wraps the nnet library.
Usage
cla_mlp(attribute, slevels, size = NULL, decay = 0.1, maxit = 1000)
Arguments
attribute |
attribute target to model building |
slevels |
possible values for the target classification |
size |
number of nodes that will be used in the hidden layer |
decay |
how quickly it decreases in gradient descent |
maxit |
maximum iterations |
Value
a classification object
Examples
data(iris)
slevels <- levels(iris$Species)
model <- cla_mlp("Species", slevels, size=3, decay=0.03)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
[Package daltoolbox version 1.0.767 Index]