cla_svm {daltoolbox} | R Documentation |
SVM for classification
Description
Creates a classification object that uses the Support Vector Machine (SVM) method for classification It wraps the e1071 library.
Usage
cla_svm(attribute, slevels, epsilon = 0.1, cost = 10, kernel = "radial")
Arguments
attribute |
attribute target to model building |
slevels |
possible values for the target classification |
epsilon |
parameter that controls the width of the margin around the separating hyperplane |
cost |
parameter that controls the trade-off between having a wide margin and correctly classifying training data points |
kernel |
the type of kernel function to be used in the SVM algorithm (linear, radial, polynomial, sigmoid) |
Value
A SVM classification object
Examples
data(iris)
slevels <- levels(iris$Species)
model <- cla_svm("Species", slevels, epsilon=0.0,cost=20.000)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
[Package daltoolbox version 1.0.767 Index]