cla_majority {daltoolbox} | R Documentation |
Majority Classification
Description
This function creates a classification object that uses the majority vote strategy to predict the target attribute. Given a target attribute, the function counts the number of occurrences of each value in the dataset and selects the one that appears most often.
Usage
cla_majority(attribute, slevels)
Arguments
attribute |
attribute target to model building. |
slevels |
Possible values for the target classification. |
Value
Returns a classification object.
Examples
data(iris)
slevels <- levels(iris$Species)
model <- cla_majority("Species", slevels)
# preparing dataset for random sampling
sr <- sample_random()
sr <- train_test(sr, iris)
train <- sr$train
test <- sr$test
model <- fit(model, train)
prediction <- predict(model, test)
predictand <- adjust_class_label(test[,"Species"])
test_eval <- evaluate(model, predictand, prediction)
test_eval$metrics
[Package daltoolbox version 1.0.767 Index]