dt_pca {daltoolbox} | R Documentation |
PCA
Description
PCA (Principal Component Analysis) is an unsupervised dimensionality reduction technique used in data analysis and machine learning. It transforms a dataset of possibly correlated variables into a new set of uncorrelated variables called principal components.
Usage
dt_pca(attribute = NULL, components = NULL)
Arguments
attribute |
target attribute to model building |
components |
number of components for PCA |
Value
obj
Examples
mypca <- dt_pca("Species")
# Automatically fitting number of components
mypca <- fit(mypca, iris)
iris.pca <- transform(mypca, iris)
head(iris.pca)
head(mypca$pca.transf)
# Manual establishment of number of components
mypca <- dt_pca("Species", 3)
mypca <- fit(mypca, datasets::iris)
iris.pca <- transform(mypca, iris)
head(iris.pca)
head(mypca$pca.transf)
[Package daltoolbox version 1.0.767 Index]