smoothing_cluster {daltoolbox} | R Documentation |
Smoothing by cluster
Description
Uses clustering method to perform data smoothing. The input vector is divided into clusters using the k-means algorithm. The mean of each cluster is then calculated and used as the smoothed value for all observations within that cluster.
Usage
smoothing_cluster(n)
Arguments
n |
number of bins |
Value
obj
Examples
data(iris)
obj <- smoothing_cluster(n = 2)
obj <- fit(obj, iris$Sepal.Length)
sl.bi <- transform(obj, iris$Sepal.Length)
table(sl.bi)
obj$interval
entro <- evaluate(obj, as.factor(names(sl.bi)), iris$Species)
entro$entropy
[Package daltoolbox version 1.0.767 Index]