area_under_curve | Area under the Curve (AUC) |
as.data.frame.density | Coerce to a Data Frame |
as.logical.bayesfactor_restricted | Bayes Factors (BF) for Order Restricted Models |
as.matrix.bayesfactor_models | Bayes Factors (BF) for model comparison |
as.numeric.map_estimate | Convert to Numeric |
as.numeric.p_direction | Convert to Numeric |
as.numeric.p_map | Convert to Numeric |
as.numeric.p_significance | Convert to Numeric |
auc | Area under the Curve (AUC) |
bayesfactor | Bayes Factors (BF) |
bayesfactor_inclusion | Inclusion Bayes Factors for testing predictors across Bayesian models |
bayesfactor_models | Bayes Factors (BF) for model comparison |
bayesfactor_models.default | Bayes Factors (BF) for model comparison |
bayesfactor_parameters | Bayes Factors (BF) for a Single Parameter |
bayesfactor_parameters.blavaan | Bayes Factors (BF) for a Single Parameter |
bayesfactor_parameters.brmsfit | Bayes Factors (BF) for a Single Parameter |
bayesfactor_parameters.data.frame | Bayes Factors (BF) for a Single Parameter |
bayesfactor_parameters.numeric | Bayes Factors (BF) for a Single Parameter |
bayesfactor_parameters.stanreg | Bayes Factors (BF) for a Single Parameter |
bayesfactor_pointnull | Bayes Factors (BF) for a Single Parameter |
bayesfactor_restricted | Bayes Factors (BF) for Order Restricted Models |
bayesfactor_restricted.blavaan | Bayes Factors (BF) for Order Restricted Models |
bayesfactor_restricted.brmsfit | Bayes Factors (BF) for Order Restricted Models |
bayesfactor_restricted.emmGrid | Bayes Factors (BF) for Order Restricted Models |
bayesfactor_restricted.stanreg | Bayes Factors (BF) for Order Restricted Models |
bayesfactor_rope | Bayes Factors (BF) for a Single Parameter |
bayesian_as_frequentist | Convert (refit) a Bayesian model to frequentist |
bcai | Bias Corrected and Accelerated Interval (BCa) |
bci | Bias Corrected and Accelerated Interval (BCa) |
bci.BFBayesFactor | Bias Corrected and Accelerated Interval (BCa) |
bci.brmsfit | Bias Corrected and Accelerated Interval (BCa) |
bci.data.frame | Bias Corrected and Accelerated Interval (BCa) |
bci.emmGrid | Bias Corrected and Accelerated Interval (BCa) |
bci.get_predicted | Bias Corrected and Accelerated Interval (BCa) |
bci.MCMCglmm | Bias Corrected and Accelerated Interval (BCa) |
bci.numeric | Bias Corrected and Accelerated Interval (BCa) |
bci.sim | Bias Corrected and Accelerated Interval (BCa) |
bci.sim.merMod | Bias Corrected and Accelerated Interval (BCa) |
bci.stanreg | Bias Corrected and Accelerated Interval (BCa) |
bf_inclusion | Inclusion Bayes Factors for testing predictors across Bayesian models |
bf_models | Bayes Factors (BF) for model comparison |
bf_parameters | Bayes Factors (BF) for a Single Parameter |
bf_pointnull | Bayes Factors (BF) for a Single Parameter |
bf_restricted | Bayes Factors (BF) for Order Restricted Models |
bf_rope | Bayes Factors (BF) for a Single Parameter |
bic_to_bf | Convert BIC indices to Bayes Factors via the BIC-approximation method. |
check_prior | Check if Prior is Informative |
ci | Confidence/Credible/Compatibility Interval (CI) |
ci.BFBayesFactor | Confidence/Credible/Compatibility Interval (CI) |
ci.brmsfit | Confidence/Credible/Compatibility Interval (CI) |
ci.data.frame | Confidence/Credible/Compatibility Interval (CI) |
ci.MCMCglmm | Confidence/Credible/Compatibility Interval (CI) |
ci.numeric | Confidence/Credible/Compatibility Interval (CI) |
ci.sim | Confidence/Credible/Compatibility Interval (CI) |
ci.sim.merMod | Confidence/Credible/Compatibility Interval (CI) |
ci.stanreg | Confidence/Credible/Compatibility Interval (CI) |
contr.bayes | Contrast Matrices for Equal Marginal Priors in Bayesian Estimation |
contr.equalprior | Contrast Matrices for Equal Marginal Priors in Bayesian Estimation |
contr.equalprior_deviations | Contrast Matrices for Equal Marginal Priors in Bayesian Estimation |
contr.equalprior_pairs | Contrast Matrices for Equal Marginal Priors in Bayesian Estimation |
contr.orthonorm | Contrast Matrices for Equal Marginal Priors in Bayesian Estimation |
convert_bayesian_as_frequentist | Convert (refit) a Bayesian model to frequentist |
convert_pd_to_p | Convert between Probability of Direction (pd) and p-value. |
convert_p_to_pd | Convert between Probability of Direction (pd) and p-value. |
cwi | Curvewise Intervals (CWI) |
cwi.data.frame | Curvewise Intervals (CWI) |
density_at | Density Probability at a Given Value |
describe_posterior | Describe Posterior Distributions |
describe_posterior.brmsfit | Describe Posterior Distributions |
describe_posterior.numeric | Describe Posterior Distributions |
describe_posterior.stanreg | Describe Posterior Distributions |
describe_prior | Describe Priors |
describe_prior.brmsfit | Describe Priors |
diagnostic_draws | Diagnostic values for each iteration |
diagnostic_posterior | Posteriors Sampling Diagnostic |
diagnostic_posterior.brmsfit | Posteriors Sampling Diagnostic |
diagnostic_posterior.default | Posteriors Sampling Diagnostic |
diagnostic_posterior.stanreg | Posteriors Sampling Diagnostic |
disgust | Moral Disgust Judgment |
distribution | Empirical Distributions |
distribution_beta | Empirical Distributions |
distribution_binom | Empirical Distributions |
distribution_binomial | Empirical Distributions |
distribution_cauchy | Empirical Distributions |
distribution_chisq | Empirical Distributions |
distribution_chisquared | Empirical Distributions |
distribution_custom | Empirical Distributions |
distribution_gamma | Empirical Distributions |
distribution_gaussian | Empirical Distributions |
distribution_mixture_normal | Empirical Distributions |
distribution_nbinom | Empirical Distributions |
distribution_normal | Empirical Distributions |
distribution_poisson | Empirical Distributions |
distribution_student | Empirical Distributions |
distribution_student_t | Empirical Distributions |
distribution_t | Empirical Distributions |
distribution_tweedie | Empirical Distributions |
distribution_uniform | Empirical Distributions |
effective_sample | Effective Sample Size (ESS) |
effective_sample.brmsfit | Effective Sample Size (ESS) |
effective_sample.stanreg | Effective Sample Size (ESS) |
equivalence_test | Test for Practical Equivalence |
equivalence_test.brmsfit | Test for Practical Equivalence |
equivalence_test.data.frame | Test for Practical Equivalence |
equivalence_test.default | Test for Practical Equivalence |
equivalence_test.stanreg | Test for Practical Equivalence |
estimate_density | Density Estimation |
estimate_density.data.frame | Density Estimation |
eti | Equal-Tailed Interval (ETI) |
eti.brmsfit | Equal-Tailed Interval (ETI) |
eti.get_predicted | Equal-Tailed Interval (ETI) |
eti.numeric | Equal-Tailed Interval (ETI) |
eti.stanreg | Equal-Tailed Interval (ETI) |
hdi | Highest Density Interval (HDI) |
hdi.brmsfit | Highest Density Interval (HDI) |
hdi.data.frame | Highest Density Interval (HDI) |
hdi.get_predicted | Highest Density Interval (HDI) |
hdi.numeric | Highest Density Interval (HDI) |
hdi.stanreg | Highest Density Interval (HDI) |
map_estimate | Maximum A Posteriori probability estimate (MAP) |
map_estimate.brmsfit | Maximum A Posteriori probability estimate (MAP) |
map_estimate.data.frame | Maximum A Posteriori probability estimate (MAP) |
map_estimate.get_predicted | Maximum A Posteriori probability estimate (MAP) |
map_estimate.numeric | Maximum A Posteriori probability estimate (MAP) |
map_estimate.stanreg | Maximum A Posteriori probability estimate (MAP) |
mcse | Monte-Carlo Standard Error (MCSE) |
mcse.stanreg | Monte-Carlo Standard Error (MCSE) |
mediation | Summary of Bayesian multivariate-response mediation-models |
mediation.brmsfit | Summary of Bayesian multivariate-response mediation-models |
mediation.stanmvreg | Summary of Bayesian multivariate-response mediation-models |
model_to_priors | Convert model's posteriors to priors (EXPERIMENTAL) |
overlap | Overlap Coefficient |
pd | Probability of Direction (pd) |
pd_to_p | Convert between Probability of Direction (pd) and p-value. |
point_estimate | Point-estimates of posterior distributions |
point_estimate.BFBayesFactor | Point-estimates of posterior distributions |
point_estimate.brmsfit | Point-estimates of posterior distributions |
point_estimate.get_predicted | Point-estimates of posterior distributions |
point_estimate.numeric | Point-estimates of posterior distributions |
point_estimate.stanreg | Point-estimates of posterior distributions |
p_direction | Probability of Direction (pd) |
p_direction.BFBayesFactor | Probability of Direction (pd) |
p_direction.brmsfit | Probability of Direction (pd) |
p_direction.data.frame | Probability of Direction (pd) |
p_direction.emmGrid | Probability of Direction (pd) |
p_direction.get_predicted | Probability of Direction (pd) |
p_direction.MCMCglmm | Probability of Direction (pd) |
p_direction.numeric | Probability of Direction (pd) |
p_direction.stanreg | Probability of Direction (pd) |
p_map | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_map.brmsfit | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_map.get_predicted | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_map.numeric | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_map.stanreg | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_pointnull | Bayesian p-value based on the density at the Maximum A Posteriori (MAP) |
p_rope | Probability of being in the ROPE |
p_rope.brmsfit | Probability of being in the ROPE |
p_rope.numeric | Probability of being in the ROPE |
p_rope.stanreg | Probability of being in the ROPE |
p_significance | Practical Significance (ps) |
p_significance.brmsfit | Practical Significance (ps) |
p_significance.get_predicted | Practical Significance (ps) |
p_significance.numeric | Practical Significance (ps) |
p_significance.stanreg | Practical Significance (ps) |
p_to_bf | Convert p-values to (pseudo) Bayes Factors |
p_to_bf.default | Convert p-values to (pseudo) Bayes Factors |
p_to_bf.numeric | Convert p-values to (pseudo) Bayes Factors |
p_to_pd | Convert between Probability of Direction (pd) and p-value. |
reshape_draws | Reshape estimations with multiple iterations (draws) to long format |
reshape_iterations | Reshape estimations with multiple iterations (draws) to long format |
rnorm_perfect | Empirical Distributions |
rope | Region of Practical Equivalence (ROPE) |
rope.brmsfit | Region of Practical Equivalence (ROPE) |
rope.numeric | Region of Practical Equivalence (ROPE) |
rope.stanreg | Region of Practical Equivalence (ROPE) |
rope_range | Find Default Equivalence (ROPE) Region Bounds |
rope_range.default | Find Default Equivalence (ROPE) Region Bounds |
sensitivity_to_prior | Sensitivity to Prior |
sensitivity_to_prior.stanreg | Sensitivity to Prior |
sexit | Sequential Effect eXistence and sIgnificance Testing (SEXIT) |
sexit_thresholds | Find Effect Size Thresholds |
si | Compute Support Intervals |
si.blavaan | Compute Support Intervals |
si.brmsfit | Compute Support Intervals |
si.data.frame | Compute Support Intervals |
si.emmGrid | Compute Support Intervals |
si.get_predicted | Compute Support Intervals |
si.numeric | Compute Support Intervals |
si.stanreg | Compute Support Intervals |
simulate_correlation | Data Simulation |
simulate_difference | Data Simulation |
simulate_prior | Returns Priors of a Model as Empirical Distributions |
simulate_simpson | Simpson's paradox dataset simulation |
simulate_ttest | Data Simulation |
spi | Shortest Probability Interval (SPI) |
spi.brmsfit | Shortest Probability Interval (SPI) |
spi.get_predicted | Shortest Probability Interval (SPI) |
spi.numeric | Shortest Probability Interval (SPI) |
spi.stanreg | Shortest Probability Interval (SPI) |
update.bayesfactor_models | Bayes Factors (BF) for model comparison |
weighted_posteriors | Generate posterior distributions weighted across models |
weighted_posteriors.BFBayesFactor | Generate posterior distributions weighted across models |
weighted_posteriors.blavaan | Generate posterior distributions weighted across models |
weighted_posteriors.brmsfit | Generate posterior distributions weighted across models |
weighted_posteriors.data.frame | Generate posterior distributions weighted across models |
weighted_posteriors.stanreg | Generate posterior distributions weighted across models |