check_prior {bayestestR} | R Documentation |
Performs a simple test to check whether the prior is informative to the posterior. This idea, and the accompanying heuristics, were discussed in this blogpost.
check_prior(model, method = "gelman", simulate_priors = TRUE, ...)
model |
A |
method |
Can be |
simulate_priors |
Should prior distributions be simulated using
|
... |
Currently not used. |
A data frame with two columns: The parameter names and the quality
of the prior (which might be "informative"
, "uninformative"
)
or "not determinable"
if the prior distribution could not be
determined).
https://statmodeling.stat.columbia.edu/2019/08/10/
## Not run:
library(bayestestR)
if (require("rstanarm")) {
model <- stan_glm(mpg ~ wt + am, data = mtcars, chains = 1, refresh = 0)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")
# An extreme example where both methods diverge:
model <- stan_glm(mpg ~ wt,
data = mtcars[1:3, ],
prior = normal(-3.3, 1, FALSE),
prior_intercept = normal(0, 1000, FALSE),
refresh = 0
)
check_prior(model, method = "gelman")
check_prior(model, method = "lakeland")
# can provide visual confirmation to the Lakeland method
plot(si(model, verbose = FALSE))
}
## End(Not run)