sexit_thresholds {bayestestR} | R Documentation |
Find Effect Size Thresholds
Description
This function attempts at automatically finding suitable default
values for a "significant" (i.e., non-negligible) and "large" effect. This is
to be used with care, and the chosen threshold should always be explicitly
reported and justified. See the detail section in sexit()
for more
information.
Usage
sexit_thresholds(x, ...)
Arguments
x |
Vector representing a posterior distribution. Can also be a
|
... |
Currently not used. |
References
Kruschke, J. K. (2018). Rejecting or accepting parameter values in Bayesian estimation. Advances in Methods and Practices in Psychological Science, 1(2), 270-280. doi:10.1177/2515245918771304.
Examples
sexit_thresholds(rnorm(1000))
if (require("rstanarm")) {
model <- suppressWarnings(stan_glm(
mpg ~ wt + gear,
data = mtcars,
chains = 2,
iter = 200,
refresh = 0
))
sexit_thresholds(model)
model <- suppressWarnings(
stan_glm(vs ~ mpg, data = mtcars, family = "binomial", refresh = 0)
)
sexit_thresholds(model)
}
if (require("brms")) {
model <- brm(mpg ~ wt + cyl, data = mtcars)
sexit_thresholds(model)
}
if (require("BayesFactor")) {
bf <- ttestBF(x = rnorm(100, 1, 1))
sexit_thresholds(bf)
}
[Package bayestestR version 0.14.0 Index]