cwi {bayestestR} | R Documentation |
Curvewise Intervals (CWI)
Description
Compute the Curvewise interval (CWI) (also called the "simultaneous interval" or "joint interval") of posterior distributions using ggdist::curve_interval()
.
Whereas the more typical "pointwise intervals" contain xx% of the posterior for a single parameter,
joint/curvewise intervals contain xx% of the posterior distribution for all parameters.
Usage
cwi(x, ...)
## S3 method for class 'data.frame'
cwi(x, ci = 0.95, ...)
Arguments
x |
Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model. bayestestR supports a wide range
of models (see, for example, |
... |
Currently not used. |
ci |
Value or vector of probability of the (credible) interval - CI
(between 0 and 1) to be estimated. Default to |
Details
Applied model predictions, pointwise intervals contain xx% of the predicted response values conditional on specific predictor values. In contrast, curvewise intervals contain xx% of the predicted response values across all predictor values. Put another way, curvewise intervals contain xx% of the full prediction lines from the model.
For more details, see the ggdist documentation on curvewise intervals.
Value
A data frame with following columns:
-
Parameter
The model parameter(s), ifx
is a model-object. Ifx
is a vector, this column is missing. -
CI
The probability of the credible interval. -
CI_low
,CI_high
The lower and upper credible interval limits for the parameters.
See Also
Other ci:
bci()
,
ci()
,
eti()
,
hdi()
,
si()
,
spi()
Examples
library(bayestestR)
if (require("ggplot2") && require("rstanarm") && require("ggdist")) {
# Generate data =============================================
k <- 11 # number of curves (iterations)
n <- 201 # number of rows
data <- data.frame(x = seq(-15, 15, length.out = n))
# Simulate iterations as new columns
for (i in 1:k) {
data[paste0("iter_", i)] <- dnorm(data$x, seq(-5, 5, length.out = k)[i], 3)
}
# Note: first, we need to transpose the data to have iters as rows
iters <- datawizard::data_transpose(data[paste0("iter_", 1:k)])
# Compute Median
data$Median <- point_estimate(iters)[["Median"]]
# Compute Credible Intervals ================================
# Compute ETI (default type of CI)
data[c("ETI_low", "ETI_high")] <- eti(iters, ci = 0.5)[c("CI_low", "CI_high")]
# Compute CWI
# ggdist::curve_interval(reshape_iterations(data), iter_value .width = 0.5)
# Visualization =============================================
ggplot(data, aes(x = x, y = Median)) +
geom_ribbon(aes(ymin = ETI_low, ymax = ETI_high), fill = "red", alpha = 0.3) +
geom_line(linewidth = 1) +
geom_line(
data = reshape_iterations(data),
aes(y = iter_value, group = iter_group),
alpha = 0.3
)
}