map_estimate {bayestestR} | R Documentation |
Maximum A Posteriori probability estimate (MAP)
Description
Find the Highest Maximum A Posteriori probability estimate (MAP) of a
posterior, i.e., the value associated with the highest probability density
(the "peak" of the posterior distribution). In other words, it is an estimation
of the mode for continuous parameters. Note that this function relies on
estimate_density()
, which by default uses a different smoothing bandwidth
("SJ"
) compared to the legacy default implemented the base R density()
function ("nrd0"
).
Usage
map_estimate(x, ...)
## S3 method for class 'numeric'
map_estimate(x, precision = 2^10, method = "kernel", ...)
## S3 method for class 'stanreg'
map_estimate(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("location", "all", "conditional", "smooth_terms", "sigma",
"distributional", "auxiliary"),
parameters = NULL,
...
)
## S3 method for class 'brmsfit'
map_estimate(
x,
precision = 2^10,
method = "kernel",
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL,
...
)
## S3 method for class 'data.frame'
map_estimate(x, precision = 2^10, method = "kernel", ...)
## S3 method for class 'get_predicted'
map_estimate(
x,
precision = 2^10,
method = "kernel",
use_iterations = FALSE,
verbose = TRUE,
...
)
Arguments
x |
Vector representing a posterior distribution, or a data frame of such
vectors. Can also be a Bayesian model. bayestestR supports a wide range
of models (see, for example, |
... |
Currently not used. |
precision |
Number of points of density data. See the |
method |
Density estimation method. Can be |
effects |
Should results for fixed effects, random effects or both be returned? Only applies to mixed models. May be abbreviated. |
component |
Should results for all parameters, parameters for the conditional model or the zero-inflated part of the model be returned? May be abbreviated. Only applies to brms-models. |
parameters |
Regular expression pattern that describes the parameters
that should be returned. Meta-parameters (like |
use_iterations |
Logical, if |
verbose |
Toggle off warnings. |
Value
A numeric value if x
is a vector. If x
is a model-object,
returns a data frame with following columns:
-
Parameter
: The model parameter(s), ifx
is a model-object. Ifx
is a vector, this column is missing. -
MAP_Estimate
: The MAP estimate for the posterior or each model parameter.
Examples
library(bayestestR)
posterior <- rnorm(10000)
map_estimate(posterior)
plot(density(posterior))
abline(v = as.numeric(map_estimate(posterior)), col = "red")
model <- rstanarm::stan_glm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)
model <- brms::brm(mpg ~ wt + cyl, data = mtcars)
map_estimate(model)