simulate_simpson {bayestestR} | R Documentation |
Simpson's paradox, or the Yule-Simpson effect, is a phenomenon in probability and statistics, in which a trend appears in several different groups of data but disappears or reverses when these groups are combined.
simulate_simpson( n = 100, r = 0.5, groups = 3, difference = 1, group_prefix = "G_" )
n |
The number of observations for each group to be generated (minimum 4). |
r |
A value or vector corresponding to the desired correlation coefficients. |
groups |
Number of groups (groups can be participants, clusters, anything). |
difference |
Difference between groups. |
group_prefix |
The prefix of the group name (e.g., "G_1", "G_2", "G_3", ...). |
A dataset.
data <- simulate_simpson(n = 10, groups = 5, r = 0.5) if (require("ggplot2")) { ggplot(data, aes(x = V1, y = V2)) + geom_point(aes(color = Group)) + geom_smooth(aes(color = Group), method = "lm") + geom_smooth(method = "lm") }