Feature Selection Algorithms for Computer Aided Diagnosis


[Up] [Top]

Documentation for package ‘FRESA.CAD’ version 3.4.8

Help Pages

A B C E F G H I J K L M N O P R S T U

FRESA.CAD-package FeatuRE Selection Algorithms for Computer-Aided Diagnosis (FRESA.CAD)

-- A --

adjustProb Probability of more than zero events

-- B --

backVarElimination_Bin IDI/NRI-based backwards variable elimination
backVarElimination_Res NeRI-based backwards variable elimination
baggedModel Get the bagged model from a list of models
baggedModelS Get the bagged model from a list of models
barPlotCiError Bar plot with error bars
BESS CV BeSS fit
BESS_EBIC CV BeSS fit
BESS_GSECTION CV BeSS fit
BinaryBenchmark Compare performance of different model fitting/filtering algorithms
bootstrapValidation_Bin Bootstrap validation of binary classification models
bootstrapValidation_Res Bootstrap validation of regression models
bootstrapVarElimination_Bin IDI/NRI-based backwards variable elimination with bootstrapping
bootstrapVarElimination_Res NeRI-based backwards variable elimination with bootstrapping
BSWiMS.model BSWiMS model selection

-- C --

calBinProb Calibrates Predicted Binary Probabilities
CalibrationProbPoissonRisk Baseline hazard and interval time Estimations
cancerVarNames Data frame used in several examples of this package
ClassMetric95ci Estimators and 95CI
ClustClass Hybrid Hierarchical Modeling
clusterISODATA Cluster Clustering using the Isodata Approach
concordance95ci Estimators and 95CI
correlated_Remove Univariate Filters
CoxBenchmark Compare performance of different model fitting/filtering algorithms
CoxRiskCalibration Baseline hazard and interval time Estimations
crossValidationFeatureSelection_Bin IDI/NRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables
crossValidationFeatureSelection_Res NeRI-based selection of a linear, logistic, or Cox proportional hazards regression model from a set of candidate variables
CVsignature Cross-validated Signature

-- E --

EmpiricalSurvDiff Estimate the LR value and its associated p-values
ensemblePredict The median prediction from a list of models
expectedEventsPerInterval Probability of more than zero events

-- F --

featureAdjustment Adjust each listed variable to the provided set of covariates
filteredFit A generic pipeline of Feature Selection, Transformation, Scale and fit
FilterUnivariate Univariate Filters
ForwardSelection.Model.Bin IDI/NRI-based feature selection procedure for linear, logistic, and Cox proportional hazards regression models
ForwardSelection.Model.Res NeRI-based feature selection procedure for linear, logistic, or Cox proportional hazards regression models
FRESA.CAD FeatuRE Selection Algorithms for Computer-Aided Diagnosis (FRESA.CAD)
FRESA.Model Automated model selection
FRESAScale Data frame normalization

-- G --

getKNNpredictionFromFormula Predict classification using KNN
getLatentCoefficients Derived Features of the UPLTM transform
getMedianLogisticCalibratedPrediction Binary Predictions Calibration of Random CV
getMedianSurvCalibratedPrediction Binary Predictions Calibration of Random CV
getObservedCoef Derived Features of the UPLTM transform
getSignature Returns a CV signature template
getVar.Bin Analysis of the effect of each term of a binary classification model by analysing its reclassification performance
getVar.Res Analysis of the effect of each term of a linear regression model by analysing its residuals
GLMNET GLMNET fit with feature selection"
GLMNET_ELASTICNET_1SE GLMNET fit with feature selection"
GLMNET_ELASTICNET_MIN GLMNET fit with feature selection"
GLMNET_RIDGE_1SE GLMNET fit with feature selection"
GLMNET_RIDGE_MIN GLMNET fit with feature selection"
GMVEBSWiMS Hybrid Hierarchical Modeling with GMVE and BSWiMS
GMVECluster Set Clustering using the Generalized Minimum Volume Ellipsoid (GMVE)

-- H --

heatMaps Plot a heat map of selected variables
HLCM Latent class based modeling of binary outcomes
HLCM_EM Latent class based modeling of binary outcomes

-- I --

IDeA Decorrelation of data frames
ILAA Decorrelation of data frames
improvedResiduals Estimate the significance of the reduction of predicted residuals

-- J --

jaccardMatrix Jaccard Index of two labeled sets

-- K --

KNN_method KNN Setup for KNN prediction

-- L --

LASSO_1SE GLMNET fit with feature selection"
LASSO_MIN GLMNET fit with feature selection"
listTopCorrelatedVariables List the variables that are highly correlated with each other
LM_RIDGE_MIN Ridge Linear Models

-- M --

MAE95ci Estimators and 95CI
meanTimeToEvent Probability of more than zero events
metric95ci Estimators and 95CI
modelFitting Fit a model to the data
mRMR.classic_FRESA FRESA.CAD wrapper of mRMRe::mRMR.classic
multivariate_BinEnsemble Multivariate Filters

-- N --

NAIVE_BAYES Naive Bayes Modeling
nearestCentroid Class Label Based on the Minimum Mahalanobis Distance
nearestNeighborImpute nearest neighbor NA imputation

-- O --

OrdinalBenchmark Compare performance of different model fitting/filtering algorithms

-- P --

plot Plot ROC curves of bootstrap results
plot.bootstrapValidation_Bin Plot ROC curves of bootstrap results
plot.bootstrapValidation_Res Plot ROC curves of bootstrap results
plot.FRESA_benchmark Plot the results of the model selection benchmark
plotModels.ROC Plot test ROC curves of each cross-validation model
ppoisGzero Probability of more than zero events
predict Linear or probabilistic prediction
predict.BAGGS Predicts 'baggedModel' bagged models
predict.CLUSTER_CLASS Predicts 'ClustClass' outcome
predict.fitFRESA Linear or probabilistic prediction
predict.FRESAKNN Predicts 'class::knn' models
predict.FRESAsignature Predicts 'CVsignature' models
predict.FRESA_BESS Predicts 'BESS' models
predict.FRESA_FILTERFIT Predicts 'filteredFit' models
predict.FRESA_GLMNET Predicts GLMNET fitted objects
predict.FRESA_HLCM Predicts BOOST_BSWiMS models
predict.FRESA_NAIVEBAYES Predicts 'NAIVE_BAYES' models
predict.FRESA_RIDGE Predicts 'LM_RIDGE_MIN' models
predict.FRESA_SVM Predicts 'TUNED_SVM' models
predict.GMVE Predicts 'GMVECluster' clusters
predict.GMVE_BSWiMS Predicts 'GMVEBSWiMS' outcome
predict.LogitCalPred Predicts calibrated probabilities
predictDecorrelate Decorrelation of data frames
predictionStats_binary Prediction Evaluation
predictionStats_ordinal Prediction Evaluation
predictionStats_regression Prediction Evaluation
predictionStats_survival Prediction Evaluation

-- R --

randomCV Cross Validation of Prediction Models
rankInverseNormalDataFrame rank-based inverse normal transformation of the data
RegresionBenchmark Compare performance of different model fitting/filtering algorithms
reportEquivalentVariables Report the set of variables that will perform an equivalent IDI discriminant function
residualForFRESA Return residuals from prediction
RRPlot Plot and Analysis of Indices of Risk

-- S --

signatureDistance Distance to the signature template
sperman95ci Estimators and 95CI
summary Returns the summary of the fit
summary.bootstrapValidation_Bin Generate a report of the results obtained using the bootstrapValidation_Bin function
summary.fitFRESA Returns the summary of the fit
summaryReport Report the univariate analysis, the cross-validation analysis and the correlation analysis

-- T --

timeSerieAnalysis Fit the listed time series variables to a given model
trajectoriesPolyFeatures Extract the per patient polynomial Coefficients of a feature trayectory
TUNED_SVM Tuned SVM

-- U --

uniRankVar Univariate analysis of features (additional values returned)
univariateRankVariables Univariate analysis of features
univariate_BinEnsemble Univariate Filters
univariate_correlation Univariate Filters
univariate_cox Univariate Filters
univariate_DTS Univariate Filters
univariate_KS Univariate Filters
univariate_Logit Univariate Filters
univariate_residual Univariate Filters
univariate_Strata Univariate Filters
univariate_tstudent Univariate Filters
univariate_Wilcoxon Univariate Filters
update Update the univariate analysis using new data
update.uniRankVar Update the univariate analysis using new data
updateModel.Bin Update the IDI/NRI-based model using new data or new threshold values
updateModel.Res Update the NeRI-based model using new data or new threshold values