GMVEBSWiMS {FRESA.CAD} | R Documentation |
Hybrid Hierarchical Modeling with GMVE and BSWiMS
Description
This function returns the BSWiMS supervised-classifier present at each one of the GMVE unsupervised Gaussian data clusters
Usage
GMVEBSWiMS(formula = formula,
data=NULL,
GMVE.control = list(p.threshold = 0.95,p.samplingthreshold = 0.5),
...
)
Arguments
formula |
An object of class |
data |
A data frame where all variables are stored in different columns |
GMVE.control |
Control parameters of the GMVECluster function |
... |
Parameters to be passed to the BSWiMS.model function |
Details
First, the function calls the BSWiMS function that returns the relevant features associated with the outcome. Then, it calls the GMVE clustering algorithm (GMVECluster) that returns a relevant data partition based on Gaussian clusters. Finally, the function will execute the BSWiMS.model classification function on each cluster returned by GMVECluster.
Value
features |
The character vector with the releavant BSWiMS features. |
cluster |
The GMVECluster object |
models |
The list of BSWiMS.model models per cluster |
Author(s)
Jose G. Tamez-Pena
Examples
## Not run:
# Get the Sonar data set
library(mlbench)
data(Sonar)
Sonar$Class <- 1*(Sonar$Class == "M")
#Train hierachical classifier
mc <- GMVEBSWiMS(Class~.,Sonar)
#report the classification
pb <- predict(mc,Sonar)
print(table(1*(pb>0.0),Sonar$Class))
## End(Not run)