EmpiricalSurvDiff {FRESA.CAD} | R Documentation |
Estimate the LR value and its associated p-values
Description
Permutations or Bootstrapping computation of the standardized log-rank (SLR) or the Chi=SLR^2 p-values for differences in survival times
Usage
EmpiricalSurvDiff(times=times,
status=status,
groups=groups,
samples=1000,
type=c("SLR","Chi"),
plots=FALSE,
minAproxSamples=100,
computeDist=FALSE,
...
)
Arguments
times |
A numeric vector with he observed times to event |
status |
A numeric vector indicating if the time to event is censored |
groups |
A numeric vector indicating the label of the two survival groups |
samples |
The number of bootstrap samples |
type |
The type of log-rank statistics. SLR or Chi |
plots |
If TRUE, the Kaplan-Meier plot will be plotted |
minAproxSamples |
The number of tail samples used for the normal-distribution approximation |
computeDist |
If TRUE, it will compute the bootstrapped distribution of the SLR |
... |
Additional parameters for the plot |
Details
It will compute the null distribution of the SRL or the square SLR (Chi) via permutations, and it will return the p-value of differences between survival times between two groups. It may also be used to compute the empirical distribution of the difference in SLR using bootstrapping. (computeDist=TRUE) The p-values will be estimated based on the sampled distribution, or normal-approximated along the tails.
Value
pvalue |
the minimum one-tailed p-value : min[p(SRL < 0),p(SRL > 0)] for type="SLR" or the two tailed p-value: 1-p(|SRL| > 0) for type="Chi" |
LR |
A list of LR statistics: LR=Expected, VR=Variance, SLR=Standardized LR. |
p.equal |
The two tailed p-value: 1-p(|SRL| > 0) |
p.sup |
The one tailed p-value: p(SRL < 0), return NA for type="Chi" |
p.inf |
The one tailed p-value: p(SRL > 0), return NA for type="Chi" |
nullDist |
permutation derived probability density function of the null distribution |
LRDist |
bootstrapped derived probability density function of the SLR (computeDist=TRUE) |
Author(s)
Jose G. Tamez-Pena
Examples
## Not run:
library(rpart)
data(stagec)
# The Log-Rank Analysis using survdiff
lrsurvdiff <- survdiff(Surv(pgtime,pgstat)~grade>2,data=stagec)
print(lrsurvdiff)
# The Log-Rank Analysis: permutations of the null Chi distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
type="Chi",plots=TRUE,samples=10000,
main="Chi Null Distribution")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
# The Log-Rank Analysis: permutations of the null SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
type="SLR",plots=TRUE,samples=10000,
main="SLR Null Distribution")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
# The Log-Rank Analysis: Bootstraping the SLR distribution
lrp <- EmpiricalSurvDiff(stagec$pgtime,stagec$pgstat,stagec$grade>2,
computeDist=TRUE,plots=TRUE,samples=100000,
main="SLR Null and SLR bootrapped")
print(list(unlist(c(lrp$LR,lrp$pvalue))))
## End(Not run)