ClustClass {FRESA.CAD} | R Documentation |
Hybrid Hierarchical Modeling
Description
This function returns the outcome associated features and the supervised-classifier present at each one of the unsupervised data clusters
Usage
ClustClass(formula = formula,
data=NULL,
filtermethod=univariate_KS,
clustermethod=GMVECluster,
classmethod=LASSO_1SE,
filtermethod.control=list(pvalue=0.1,limit=21),
clustermethod.control= list(p.threshold = 0.95,
p.samplingthreshold = 0.5),
classmethod.control=list(family = "binomial"),
pca=TRUE,
normalize=TRUE
)
Arguments
formula |
An object of class |
data |
A data frame where all variables are stored in different columns |
filtermethod |
The function name that will return the relevant features |
clustermethod |
The function name that will cluster the data points |
classmethod |
The function name of the binary classification method |
filtermethod.control |
A list with the parameters to be passed to the filter function |
clustermethod.control |
A list with the parameters to be passed to the clustering function |
classmethod.control |
A list with the parameters to be passed to the classification function |
pca |
if TRUE it will compute the PCA transform |
normalize |
if pca=TRUE and normalize=TRUE it will normalize all the data. |
Details
This function will first call the filter function that should return the relevant a named vector with the p-value of the features associated with the outcome. Then it will call user-supplied clustering algorithm that must return a relevant data partition based on the discovered features. The returned object of the clustering function must contain a $classification object indicates the class label of each data point. Finally, the function will call the classification function on each cluster returned by the clustering function.
Value
features |
The named vector of FDR adjusted p-values returned by the filtering function. |
cluster |
The clustering function output |
models |
The list of classification objects per data cluster |
Author(s)
Jose G. Tamez-Pena
Examples
## Not run:
library(mlbench) # Location of the Sonar data set
library(mclust) # The cluster library
data(Sonar)
Sonar$Class <- 1*(Sonar$Class == "M")
#Train hierachical classifier
mc <- ClustClass(Class~.,Sonar,clustermethod=Mclust,clustermethod.control=list(G = 1:4))
#report the classification
pb <- predict(mc,Sonar)
print(table(1*(pb>0.0),Sonar$Class))
## End(Not run)