FilterUnivariate {FRESA.CAD} | R Documentation |
Univariate Filters
Description
Returns the top set of features that are statistically associated with the outcome.
Usage
univariate_Logit(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
uniTest=c("zIDI","zNRI"),limit=0,...,n=0)
univariate_residual(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
uniTest=c("Ftest","Binomial","Wilcox","tStudent"),
type=c("LM","LOGIT"),limit=0,...,n=0)
univariate_tstudent(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)
univariate_Wilcoxon(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)
univariate_KS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)
univariate_DTS(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)
univariate_correlation(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
method = "kendall",limit=0,...,n=0)
univariate_cox(data=NULL, Outcome=NULL, pvalue=0.2, adjustMethod="BH",
limit=0,...,n=0)
univariate_BinEnsemble(data,Outcome, pvalue=0.2,limit=0,adjustMethod="BH",...)
univariate_Strata(data,Outcome,pvalue=0.2,limit=0,
adjustMethod="BH",
unifilter=univariate_BinEnsemble,strata="Gender",...)
correlated_Remove(data=NULL,fnames=NULL,thr=0.999,isDataCorMatrix=FALSE)
Arguments
data |
The data frame |
Outcome |
The outcome feature |
pvalue |
The threshold pvalue used after the p.adjust method |
adjustMethod |
The method used by the p.adjust method |
uniTest |
The unitTest to be performed by the linear fitting model |
type |
The type of linear model: LM or LOGIT |
method |
The correlation method: pearson,spearman or kendall. |
limit |
The samples-wise fraction of features to return. |
fnames |
The list of features to test inside the correlated_Remove function |
thr |
The maximum correlation to allow between features |
unifilter |
The filter function to be stratified |
strata |
The feature to be used for data stratification |
... |
Parameters to be passed to the correlated_Remove function |
n |
the number of original features passed to p.adjust |
isDataCorMatrix |
The provided data is the correlation matrix |
Value
Named vector with the adjusted p-values or the list of no-correlated features for the correlated_Remove
Author(s)
Jose G. Tamez-Pena
Examples
## Not run:
library("FRESA.CAD")
### Univariate Filter Examples ####
# Get the stage C prostate cancer data from the rpart package
data(stagec,package = "rpart")
# Prepare the data. Create a model matrix without the event time and interactions
stagec$pgtime <- NULL
stagec$eet <- as.factor(stagec$eet)
options(na.action = 'na.pass')
stagec_mat <- cbind(pgstat = stagec$pgstat,
as.data.frame(model.matrix(pgstat ~ .*.,stagec))[-1])
fnames <- colnames(stagec_mat)
fnames <- str_replace_all(fnames,":","__")
colnames(stagec_mat) <- fnames
# Impute the missing data
dataCancerImputed <- nearestNeighborImpute(stagec_mat)
dataCancerImputed[,1:ncol(dataCancerImputed)] <- sapply(dataCancerImputed,as.numeric)
# Get the top Features associated to pgstat
q_values <- univariate_Logit(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)
qValueMatrix <- q_values
idiqValueMatrix <- q_values
barplot(-log(q_values),las=2,cex.names=0.4,ylab="-log(Q)",
main="Association with PGStat: IDI Test")
q_values <- univariate_Logit(data=dataCancerImputed,
Outcome="pgstat",
uniTest="zNRI",pvalue = 0.05)
qValueMatrix <- cbind(idiqValueMatrix,q_values[names(idiqValueMatrix)])
q_values <- univariate_residual(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05,type="LOGIT")
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
q_values <- univariate_tstudent(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
q_values <- univariate_Wilcoxon(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
q_values <- univariate_correlation(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05)
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
q_values <- univariate_correlation(data=dataCancerImputed,
Outcome="pgstat",
pvalue = 0.05,
method = "pearson")
#The qValueMatrix has the qValues of all filter methods.
qValueMatrix <- cbind(qValueMatrix,q_values[names(idiqValueMatrix)])
colnames(qValueMatrix) <- c("IDI","NRI","F","t","W","K","P")
#Do the log transform to display the heatmap
qValueMatrix <- -log10(qValueMatrix)
#the Heatmap of the q-values
gplots::heatmap.2(qValueMatrix,Rowv = FALSE,dendrogram = "col",
main = "Method q.values",cexRow = 0.4)
## End(Not run)