filteredFit {FRESA.CAD} | R Documentation |
A generic pipeline of Feature Selection, Transformation, Scale and fit
Description
Sequential application of feature selection, linear transformation, data scaling then fit
Usage
filteredFit(formula = formula,
data=NULL,
filtermethod=univariate_KS,
filtermethod.control=list(limit=0),
Transf=c("none","PCA","CCA","ILAA"),
Transf.control=list(thr=0.8),
Scale="none",
Scale.control=list(strata=NA),
refNormIDs=NULL,
trainIDs=NULL,
fitmethod=e1071::svm,
...
)
Arguments
formula |
the base formula to extract the outcome |
data |
the data to be used for training the KNN method |
filtermethod |
the method for feature selection |
filtermethod.control |
the set of parameters required by the feature selection function |
Scale |
Scale the data using the provided method |
Scale.control |
Scale parameters |
Transf |
Data transformations: "none","PCA","CCA" or "ILAA", |
Transf.control |
Parameters to the transformation function |
fitmethod |
The fit function to be used |
trainIDs |
The list of sample IDs to be used for training |
refNormIDs |
The list of sample IDs to be used for transformations. ie. Reference Control IDs |
... |
Parameters for the fitting function |
Value
fit |
The fitted model |
filter |
The output of the feature selection function |
selectedfeatures |
The character vector with all the selected features |
usedFeatures |
The set of features used for training |
parameters |
The parameters passed to the fitting method |
asFactor |
Indicates if the fitting was to a factor |
classLen |
The number of possible outcomes |
Author(s)
Jose G. Tamez-Pena