FCPS-package |
Fundamental Clustering Problems Suite |
ADPclustering |
(Adaptive) Density Peak Clustering algorithm using automatic parameter selection |
AgglomerativeNestingClustering |
AGNES clustering |
APclustering |
Affinity Propagation Clustering |
Atom |
Atom introduced in [Ultsch, 2004]. |
AutomaticProjectionBasedClustering |
Automatic Projection-Based Clustering |
Chainlink |
Chainlink introduced in [Ultsch et al., 1994; Ultsch, 1995]. |
ClusterabilityMDplot |
Clusterability MDplot |
ClusterAccuracy |
ClusterAccuracy |
ClusterApply |
Applies a function over grouped data |
ClusterARI |
Adjusted Rand index |
ClusterChallenge |
Generates a Fundamental Clustering Challenge based on specific artificial datasets. |
ClusterCount |
ClusterCount |
ClusterCreateClassification |
Create Classification for Cluster.. functions |
ClusterDaviesBouldinIndex |
Davies Bouldin Index |
ClusterDendrogram |
Cluster Dendrogram |
ClusterDistances |
ClusterDistances |
ClusterDunnIndex |
Dunn Index |
ClusterEqualWeighting |
ClusterEqualWeighting |
ClusteringAlgorithms |
Fundamental Clustering Problems Suite |
ClusterInterDistances |
Computes Inter-Cluster Distances |
ClusterIntraDistances |
ClusterDistances |
ClusterMCC |
Matthews Correlation Coefficient (MCC) |
ClusterNoEstimation |
Estimates Number of Clusters using up to 26 Indicators |
ClusterNormalize |
Cluster Normalize |
ClusterPlotMDS |
Plot Clustering using Dimensionality Reduction by MDS |
ClusterRedefine |
Redfines Clustering |
ClusterRename |
Renames Clustering |
ClusterRenameDescendingSize |
Cluster Rename Descending Size |
ClusterShannonInfo |
Shannon Information |
ClusterUpsamplingMinority |
Cluster Up Sampling using SMOTE for minority cluster |
CrossEntropyClustering |
Cross-Entropy Clustering |
DatabionicSwarmClustering |
Databionic Swarm (DBS) Clustering and Visualization |
DBSCAN |
DBSCAN |
DBscan |
DBSCAN |
DBSclusteringAndVisualization |
Databionic Swarm (DBS) Clustering and Visualization |
DensityPeakClustering |
Density Peak Clustering algorithm using the Decision Graph |
DivisiveAnalysisClustering |
Large DivisiveAnalysisClustering Clustering |
EngyTime |
EngyTime introduced in [Baggenstoss, 2002]. |
EntropyOfDataField |
Entropy Of a Data Field [Wang et al., 2011]. |
EstimateRadiusByDistance |
Estimate Radius By Distance |
FannyClustering |
Fuzzy Analysis Clustering [Rousseeuw/Kaufman, 1990, p. 253-279] |
GapStatistic |
Gap Statistic |
GenieClustering |
Genie Clustering by Gini Index |
GolfBall |
GolfBall introduced in [Ultsch, 2005] |
HCLclustering |
On-line Update (Hard Competitive learning) method |
HDDClustering |
HDD clustering is a model-based clustering method of [Bouveyron et al., 2007]. |
Hepta |
Hepta introduced in [Ultsch, 2003] |
HierarchicalCluster |
Internal function of Hierarchical Clusterering of Data |
HierarchicalClusterData |
Internal function of Hierarchical Clusterering of Data |
HierarchicalClusterDists |
Internal Function of Hierarchical Clustering with Distances |
HierarchicalClustering |
Hierarchical Clustering |
HierarchicalDBSCAN |
Hierarchical DBSCAN |
Hierarchical_DBSCAN |
Hierarchical DBSCAN |
Hierarchical_DBscan |
Hierarchical DBSCAN |
InterClusterDistances |
Computes Inter-Cluster Distances |
IntraClusterDistances |
ClusterDistances |
kmeansClustering |
K-Means Clustering |
kmeansDist |
k-means Clustering using a distance matrix |
LargeApplicationClustering |
Large Application Clustering |
Leukemia |
Leukemia distance matrix and classificiation used in [Thrun, 2018] |
Lsun3D |
Lsun3D inspired by FCPS introduced in [Thrun, 2018] |
MarkovClustering |
Markov Clustering |
MeanShiftClustering |
Mean Shift Clustering |
MinimalEnergyClustering |
Minimal Energy Clustering |
MinimaxLinkageClustering |
Minimax Linkage Hierarchical Clustering |
ModelBasedClustering |
Model Based Clustering |
ModelBasedVarSelClustering |
Model Based Clustering with Variable Selection |
MoGclustering |
Mixture of Gaussians Clustering using EM |
MSTclustering |
MST-kNN clustering algorithm [Inostroza-Ponta, 2008]. |
NetworkClustering |
Network Clustering |
NeuralGasClustering |
Neural gas algorithm for clustering |
OPTICSclustering |
OPTICS Clustering |
PAMClustering |
Partitioning Around Medoids (PAM) |
PAMclustering |
Partitioning Around Medoids (PAM) |
pdfClustering |
Probability Density Distribution Clustering |
PenalizedRegressionBasedClustering |
Penalized Regression-Based Clustering of [Wu et al., 2016]. |
ProjectionPursuitClustering |
Cluster Identification using Projection Pursuit as described in [Hofmeyr/Pavlidis, 2019]. |
QTClustering |
Stochastic QT Clustering |
QTclustering |
Stochastic QT Clustering |
RobustTrimmedClustering |
Robust Trimmed Clustering |
SharedNearestNeighborClustering |
SNN clustering |
SOMclustering |
self-organizing maps based clustering implemented by [Wherens, Buydens, 2017]. |
SOTAclustering |
SOTA Clustering |
sotaClustering |
SOTA Clustering |
SparseClustering |
Sparse Clustering |
SpectralClustering |
Spectral Clustering |
Spectrum |
Fast Adaptive Spectral Clustering [John et al, 2020] |
StatPDEdensity |
Pareto Density Estimation |
SubspaceClustering |
Algorithms for Subspace clustering |
TandemClustering |
Tandem Clustering |
Target |
Target introduced in [Ultsch, 2005]. |
Tetra |
Tetra introduced in [Ultsch, 1993] |
TwoDiamonds |
TwoDiamonds introduced in [Ultsch, 2003a, 2003b] |
WingNut |
WingNut introduced in [Ultsch, 2005] |