pdfClustering {FCPS}R Documentation

Probability Density Distribution Clustering

Description

Clustering via non parametric density estimation

Usage

pdfClustering(Data, PlotIt = FALSE, ...)

Arguments

Data

[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features.

PlotIt

Default: FALSE, if TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in Cls

...

Further arguments to be set for the clustering algorithm, if not set, default arguments are used.

Details

Cluster analysis is performed by the density-based procedures described in Azzalini and Torelli (2007) and Menardi and Azzalini (2014), and summarized in Azzalini and Menardi (2014).

Value

List of

Cls

[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering.

Object

Object defined by clustering algorithm as the other output of this algorithm

Author(s)

Michael Thrun

References

Azzalini, A., Menardi, G. (2014). Clustering via nonparametric density estimation: the R package pdfCluster. Journal of Statistical Software, 57(11), 1-26, URL http://www.jstatsoft.org/v57/i11/.

Azzalini A., Torelli N. (2007). Clustering via nonparametric density estimation. Statistics and Computing. 17, 71-80.

Menardi, G., Azzalini, A. (2014). An advancement in clustering via nonparametric density estimation. Statistics and Computing. DOI: 10.1007/s11222-013-9400-x.

Examples

data('Hepta')
out=pdfClustering(Hepta$Data,PlotIt=FALSE)

[Package FCPS version 1.3.4 Index]