HCLclustering {FCPS} | R Documentation |
On-line Update (Hard Competitive learning) method
Description
Hard Competitive learning clustering published by [Ripley, 2007].
Usage
HCLclustering(Data, ClusterNo,PlotIt=FALSE,...)
Arguments
Data |
[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. |
ClusterNo |
A number k which defines k different clusters to be build by the algorithm. |
PlotIt |
Default: FALSE, If TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in |
... |
Further arguments to be set for the clustering algorithm, if not set, default arguments are used. |
Value
List of
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Author(s)
Michael Thrun
References
[Dimitriadou, 2002] Dimitriadou, E.: cclust-convex clustering methods and clustering indexes. R package, 2002,
[Ripley, 2007] Ripley, B. D.: Pattern recognition and neural networks, Cambridge university press, ISBN: 0521717701, 2007.
Examples
data('Hepta')
out=HCLclustering(Hepta$Data,ClusterNo=7,PlotIt=FALSE)