ClusterChallenge {FCPS} | R Documentation |
Generates a Fundamental Clustering Challenge based on specific artificial datasets.
Description
Lsun3D and FCPS datasets were introduced in various publications for a specific fixed size. This function generalizes them for any sample size.
Usage
ClusterChallenge(Name,SampleSize,
PlotIt=FALSE,PointSize=1,Plotter3D="rgl",...)
Arguments
Name |
string, either 'Atom', 'Chainlink, 'EngyTime', 'GolfBall', 'Hepta', 'Lsun3D', 'Target' 'Tetra' 'TwoDiamonds' 'WingNut |
SampleSize |
Size of Sample higher than 300, preferable above 500 |
PlotIt |
TRUE: Plots the challenge with |
PointSize |
If PlotIt=TRUE: see |
Plotter3D |
If PlotIt=TRUE: see |
... |
If PlotIt=TRUE: further arguments for |
Details
A detailed description of the datasets can be found in [Thrun/Ultsch 2020]. Sampling works by combining Pareto Density Estimation with rejection sampling.
Value
LIST, with
Name |
[1:SampleSize,1:d] data matrix |
Cls |
[1:SampleSize] numerical vector of classification |
Author(s)
Michael Thrun
References
[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems, Data in Brief, Vol. in press, pp. 105501, doi:10.1016/j.dib.2020.105501, 2020.
See Also
Examples
## Not run:
ClusterChallenge("Chainlink",2000,PlotIt=TRUE)
## End(Not run)