DivisiveAnalysisClustering {FCPS} | R Documentation |
Large DivisiveAnalysisClustering Clustering
Description
Divisive Analysis Clustering (diana) of [Rousseeuw/Kaufman, 1990, pp. 253-279]
Usage
DivisiveAnalysisClustering(DataOrDistances, ClusterNo,
PlotIt=FALSE,Standardization=TRUE,PlotTree=FALSE,Data,...)
Arguments
DataOrDistances |
[1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. Alternatively, symmetric [1:n,1:n] distance matrix |
ClusterNo |
A number k which defines k different clusters to be build by the algorithm.
if |
PlotIt |
Default: FALSE, If TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in |
Standardization |
|
PlotTree |
TRUE: Plots the dendrogram, FALSE: no plot |
Data |
[1:n,1:d] data matrix in the case that |
... |
Further arguments to be set for the clustering algorithm, if not set, default arguments are used. |
Value
List of
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. |
Dendrogram |
Dendrogram of hierarchical clustering algorithm |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Author(s)
Michael Thrun
References
[Rousseeuw/Kaufman, 1990] Rousseeuw, P. J., & Kaufman, L.: Finding groups in data, Belgium, John Wiley & Sons Inc., ISBN: 0471735787, doi: 10.1002/9780470316801, Online ISBN: 9780470316801, 1990.
Examples
data('Hepta')
CA=DivisiveAnalysisClustering(Hepta$Data,ClusterNo=7,PlotIt=FALSE)
print(CA$Object)
plot(CA$Object)
ClusterDendrogram(CA$Dendrogram,7,main='DIANA')