MarkovClustering {FCPS} | R Documentation |
Markov Clustering
Description
Graph clustering algorithm introduced by [van Dongen, 2000].
Usage
MarkovClustering(DataOrDistances=NULL,Adjacency=NULL,
Radius=TRUE,DistanceMethod="euclidean",addLoops = TRUE,PlotIt=FALSE,...)
Arguments
DataOrDistances |
NULL or: Either [1:n,1:n] symmetric distance matrix or [1:n,1:d] not symmetric data matrix of n cases and d variables |
Adjacency |
Used if |
Radius |
Scalar, Radius for unit disk graph (r-ball graph) if adjacency matrix is missing. Automatic estimation can be done either with =TRUE [Ultsch, 2005] or FALSE [Thrun et al., 2016] if Data instead of Distances are given. |
DistanceMethod |
Optional distance method of data, default is euclid, see |
addLoops |
Logical; if TRUE, self-loops with weight 1 are added to each vertex of x (see |
PlotIt |
Default: FALSE, If TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in |
... |
Further arguments to be set for the clustering algorithm, if not set, default arguments are used. |
Details
DataOrDistances
is used to compute the Adjecency
matrix if this input is missing. Then a unit-disk (R-ball) graph is calculated.
Value
List of
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. Points which cannot be assigned to a cluster will be reported with 0. |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Author(s)
Michael Thrun
References
[van Dongen, 2000] van Dongen, S.M. Graph Clustering by Flow Simulation. Ph.D. thesis, Universtiy of Utrecht. Utrecht University Repository: http://dspace.library.uu.nl/handle/1874/848, 2000
[Thrun et al., 2016] Thrun, M. C., Lerch, F., Loetsch, J., & Ultsch, A. : Visualization and 3D Printing of Multivariate Data of Biomarkers, in Skala, V. (Ed.), International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Vol. 24, Plzen, 2016.
[Ultsch, 2005] Ultsch, A.: Pareto density estimation: A density estimation for knowledge discovery, In Baier, D. & Werrnecke, K. D. (Eds.), Innovations in classification, data science, and information systems, (Vol. 27, pp. 91-100), Berlin, Germany, Springer, 2005.
Examples
data('Hepta')
out=MarkovClustering(Data=Hepta$Data,PlotIt=FALSE)