Bayesian Network Meta-Analysis of Individual and Aggregate Data


[Up] [Top]

Documentation for package ‘multinma’ version 0.7.1

Help Pages

A B C D E F G H I L M N P Q R S T U W misc

multinma-package multinma: A Package for Network Meta-Analysis of Individual and Aggregate Data in Stan

-- A --

adapt_delta Target average acceptance probability
add_integration Add numerical integration points to aggregate data
add_integration.data.frame Add numerical integration points to aggregate data
add_integration.default Add numerical integration points to aggregate data
add_integration.nma_data Add numerical integration points to aggregate data
as.array.nma_rank_probs Methods for 'nma_summary' objects
as.array.nma_summary Methods for 'nma_summary' objects
as.array.stan_nma Convert samples into arrays, matrices, or data frames
as.data.frame.nma_summary Methods for 'nma_summary' objects
as.data.frame.nodesplit_summary Methods for 'nodesplit_summary' objects
as.data.frame.stan_nma Convert samples into arrays, matrices, or data frames
as.igraph.nma_data Convert networks to graph objects
as.matrix.nma_rank_probs Methods for 'nma_summary' objects
as.matrix.nma_summary Methods for 'nma_summary' objects
as.matrix.stan_nma Convert samples into arrays, matrices, or data frames
as.stanfit as.stanfit
as.stanfit.default as.stanfit
as.stanfit.stan_nma as.stanfit
as.tibble.nma_summary Methods for 'nma_summary' objects
as.tibble.nodesplit_summary Methods for 'nodesplit_summary' objects
as.tibble.stan_nma Convert samples into arrays, matrices, or data frames
as_tbl_graph.nma_data Convert networks to graph objects
as_tibble.nma_summary Methods for 'nma_summary' objects
as_tibble.nodesplit_summary Methods for 'nodesplit_summary' objects
as_tibble.stan_nma Convert samples into arrays, matrices, or data frames
atrial_fibrillation Stroke prevention in atrial fibrillation patients

-- B --

bcg_vaccine BCG vaccination
blocker Beta blockers to prevent mortality after MI

-- C --

cauchy Prior distributions
combine_network Combine multiple data sources into one network

-- D --

dbern The Bernoulli Distribution
dgamma The Gamma distribution
dgent Generalised Student's t distribution (with location and scale)
diabetes Incidence of diabetes in trials of antihypertensive drugs
dic Deviance Information Criterion (DIC)
dietary_fat Reduced dietary fat to prevent mortality
distr Specify a general marginal distribution
dlogitnorm The logit Normal distribution
dlogt Log Student's t distribution
dmspline Distribution functions for M-spline baseline hazards

-- E --

example_ndmm Example newly-diagnosed multiple myeloma
example_pso_mlnmr Example plaque psoriasis ML-NMR
example_smk_fe Example smoking FE NMA
example_smk_nodesplit Example smoking node-splitting
example_smk_re Example smoking RE NMA
example_smk_ume Example smoking UME NMA
exponential Prior distributions

-- F --

flat Prior distributions

-- G --

geom_km Kaplan-Meier curves of survival data
get_nodesplits Direct and indirect evidence

-- H --

half_cauchy Prior distributions
half_normal Prior distributions
half_student_t Prior distributions
has_direct Direct and indirect evidence
has_indirect Direct and indirect evidence
Hmspline Distribution functions for M-spline baseline hazards
hmspline Distribution functions for M-spline baseline hazards
hta_psoriasis HTA Plaque Psoriasis

-- I --

is_network_connected Check network connectedness

-- L --

log_normal Prior distributions
log_student_t Prior distributions
loo Model comparison using the 'loo' package
loo.stan_nma Model comparison using the 'loo' package

-- M --

make_knots Knot locations for M-spline baseline hazard models
marginal_effects Marginal treatment effects
mcmc_array Working with 3D MCMC arrays
mcmc_array-class Working with 3D MCMC arrays
mlnmr_data The nma_data class
mlnmr_data-class The nma_data class
multi Multinomial outcome data
multinma multinma: A Package for Network Meta-Analysis of Individual and Aggregate Data in Stan

-- N --

names.mcmc_array Working with 3D MCMC arrays
names<-.mcmc_array Working with 3D MCMC arrays
ndmm_agd Newly diagnosed multiple myeloma
ndmm_agd_covs Newly diagnosed multiple myeloma
ndmm_ipd Newly diagnosed multiple myeloma
nma Network meta-analysis models
nma_data The nma_data class
nma_data-class The nma_data class
nma_dic The nma_dic class
nma_dic-class The nma_dic class
nma_nodesplit The nma_nodesplit class
nma_nodesplit-class The nma_nodesplit class
nma_nodesplit_df The nma_nodesplit class
nma_nodesplit_df-class The nma_nodesplit class
nma_prior The nma_prior class
nma_prior-class The nma_prior class
nma_rank_probs The 'nma_summary' class
nma_summary The 'nma_summary' class
nma_summary-class The 'nma_summary' class
nodesplit_summary The 'nodesplit_summary' class
nodesplit_summary-class The 'nodesplit_summary' class
normal Prior distributions

-- P --

pairs.stan_nma Matrix of plots for a 'stan_nma' object
parkinsons Mean off-time reduction in Parkison's disease
pbern The Bernoulli Distribution
pgamma The Gamma distribution
pgent Generalised Student's t distribution (with location and scale)
plaque_psoriasis Plaque psoriasis data
plaque_psoriasis_agd Plaque psoriasis data
plaque_psoriasis_ipd Plaque psoriasis data
plogitnorm The logit Normal distribution
plogt Log Student's t distribution
plot.mcmc_array Working with 3D MCMC arrays
plot.nma_data Network plots
plot.nma_dic Plots of model fit diagnostics
plot.nma_nodesplit Summarise the results of node-splitting models
plot.nma_nodesplit_df Summarise the results of node-splitting models
plot.nma_parameter_summary Plots of summary results
plot.nma_rank_probs Plots of summary results
plot.nma_summary Plots of summary results
plot.nodesplit_summary Plots of node-splitting models
plot.stan_nma Posterior summaries from 'stan_nma' objects
plot.surv_nma_summary Plots of summary results
plot_integration_error Plot numerical integration error
plot_prior_posterior Plot prior vs posterior distribution
pmspline Distribution functions for M-spline baseline hazards
posterior_ranks Treatment rankings and rank probabilities
posterior_rank_probs Treatment rankings and rank probabilities
predict.stan_nma Predictions of absolute effects from NMA models
predict.stan_nma_surv Predictions of absolute effects from NMA models
print.mcmc_array Working with 3D MCMC arrays
print.mlnmr_data Print 'nma_data' objects
print.nma_data Print 'nma_data' objects
print.nma_dic Print DIC details
print.nma_nodesplit Print 'nma_nodesplit_df' objects
print.nma_nodesplit_df Print 'nma_nodesplit_df' objects
print.nma_summary Methods for 'nma_summary' objects
print.nodesplit_summary Methods for 'nodesplit_summary' objects
print.stan_nma Print 'stan_nma' objects
priors Prior distributions

-- Q --

qbern The Bernoulli Distribution
qgamma The Gamma distribution
qgent Generalised Student's t distribution (with location and scale)
qlogitnorm The logit Normal distribution
qlogt Log Student's t distribution
qmspline Distribution functions for M-spline baseline hazards

-- R --

relative_effects Relative treatment effects
RE_cor Random effects structure
rmst_mspline Distribution functions for M-spline baseline hazards

-- S --

set_agd_arm Set up arm-based aggregate data
set_agd_contrast Set up contrast-based aggregate data
set_agd_surv Set up aggregate survival data
set_ipd Set up individual patient data
smoking Smoking cessation data
stan_mlnmr The stan_nma class
stan_nma The stan_nma class
stan_nma-class The stan_nma class
statins Statins for cholesterol lowering
student_t Prior distributions
summary.mcmc_array Working with 3D MCMC arrays
summary.nma_nodesplit Summarise the results of node-splitting models
summary.nma_nodesplit_df Summarise the results of node-splitting models
summary.nma_prior Summary of prior distributions
summary.stan_nma Posterior summaries from 'stan_nma' objects

-- T --

theme_multinma Plot theme for multinma plots
thrombolytics Thrombolytic treatments data
transfusion Granulocyte transfusion in patients with neutropenia or neutrophil dysfunction

-- U --

unnest_integration Add numerical integration points to aggregate data

-- W --

waic Model comparison using the 'loo' package
waic.stan_nma Model comparison using the 'loo' package
which_RE Random effects structure

-- misc --

.default Set default values
.is_default Set default values