A B C D E F G H I L M N P Q R S T U W misc
multinma-package | multinma: A Package for Network Meta-Analysis of Individual and Aggregate Data in Stan |
adapt_delta | Target average acceptance probability |
add_integration | Add numerical integration points to aggregate data |
add_integration.data.frame | Add numerical integration points to aggregate data |
add_integration.default | Add numerical integration points to aggregate data |
add_integration.nma_data | Add numerical integration points to aggregate data |
as.array.nma_rank_probs | Methods for 'nma_summary' objects |
as.array.nma_summary | Methods for 'nma_summary' objects |
as.array.stan_nma | Convert samples into arrays, matrices, or data frames |
as.data.frame.nma_summary | Methods for 'nma_summary' objects |
as.data.frame.nodesplit_summary | Methods for 'nodesplit_summary' objects |
as.data.frame.stan_nma | Convert samples into arrays, matrices, or data frames |
as.igraph.nma_data | Convert networks to graph objects |
as.matrix.nma_rank_probs | Methods for 'nma_summary' objects |
as.matrix.nma_summary | Methods for 'nma_summary' objects |
as.matrix.stan_nma | Convert samples into arrays, matrices, or data frames |
as.stanfit | as.stanfit |
as.stanfit.default | as.stanfit |
as.stanfit.stan_nma | as.stanfit |
as.tibble.nma_summary | Methods for 'nma_summary' objects |
as.tibble.nodesplit_summary | Methods for 'nodesplit_summary' objects |
as.tibble.stan_nma | Convert samples into arrays, matrices, or data frames |
as_tbl_graph.nma_data | Convert networks to graph objects |
as_tibble.nma_summary | Methods for 'nma_summary' objects |
as_tibble.nodesplit_summary | Methods for 'nodesplit_summary' objects |
as_tibble.stan_nma | Convert samples into arrays, matrices, or data frames |
atrial_fibrillation | Stroke prevention in atrial fibrillation patients |
bcg_vaccine | BCG vaccination |
blocker | Beta blockers to prevent mortality after MI |
cauchy | Prior distributions |
combine_network | Combine multiple data sources into one network |
dbern | The Bernoulli Distribution |
dgamma | The Gamma distribution |
dgent | Generalised Student's t distribution (with location and scale) |
diabetes | Incidence of diabetes in trials of antihypertensive drugs |
dic | Deviance Information Criterion (DIC) |
dietary_fat | Reduced dietary fat to prevent mortality |
distr | Specify a general marginal distribution |
dlogitnorm | The logit Normal distribution |
dlogt | Log Student's t distribution |
dmspline | Distribution functions for M-spline baseline hazards |
example_ndmm | Example newly-diagnosed multiple myeloma |
example_pso_mlnmr | Example plaque psoriasis ML-NMR |
example_smk_fe | Example smoking FE NMA |
example_smk_nodesplit | Example smoking node-splitting |
example_smk_re | Example smoking RE NMA |
example_smk_ume | Example smoking UME NMA |
exponential | Prior distributions |
flat | Prior distributions |
geom_km | Kaplan-Meier curves of survival data |
get_nodesplits | Direct and indirect evidence |
half_cauchy | Prior distributions |
half_normal | Prior distributions |
half_student_t | Prior distributions |
has_direct | Direct and indirect evidence |
has_indirect | Direct and indirect evidence |
Hmspline | Distribution functions for M-spline baseline hazards |
hmspline | Distribution functions for M-spline baseline hazards |
hta_psoriasis | HTA Plaque Psoriasis |
is_network_connected | Check network connectedness |
log_normal | Prior distributions |
log_student_t | Prior distributions |
loo | Model comparison using the 'loo' package |
loo.stan_nma | Model comparison using the 'loo' package |
make_knots | Knot locations for M-spline baseline hazard models |
marginal_effects | Marginal treatment effects |
mcmc_array | Working with 3D MCMC arrays |
mcmc_array-class | Working with 3D MCMC arrays |
mlnmr_data | The nma_data class |
mlnmr_data-class | The nma_data class |
multi | Multinomial outcome data |
multinma | multinma: A Package for Network Meta-Analysis of Individual and Aggregate Data in Stan |
names.mcmc_array | Working with 3D MCMC arrays |
names<-.mcmc_array | Working with 3D MCMC arrays |
ndmm_agd | Newly diagnosed multiple myeloma |
ndmm_agd_covs | Newly diagnosed multiple myeloma |
ndmm_ipd | Newly diagnosed multiple myeloma |
nma | Network meta-analysis models |
nma_data | The nma_data class |
nma_data-class | The nma_data class |
nma_dic | The nma_dic class |
nma_dic-class | The nma_dic class |
nma_nodesplit | The nma_nodesplit class |
nma_nodesplit-class | The nma_nodesplit class |
nma_nodesplit_df | The nma_nodesplit class |
nma_nodesplit_df-class | The nma_nodesplit class |
nma_prior | The nma_prior class |
nma_prior-class | The nma_prior class |
nma_rank_probs | The 'nma_summary' class |
nma_summary | The 'nma_summary' class |
nma_summary-class | The 'nma_summary' class |
nodesplit_summary | The 'nodesplit_summary' class |
nodesplit_summary-class | The 'nodesplit_summary' class |
normal | Prior distributions |
pairs.stan_nma | Matrix of plots for a 'stan_nma' object |
parkinsons | Mean off-time reduction in Parkison's disease |
pbern | The Bernoulli Distribution |
pgamma | The Gamma distribution |
pgent | Generalised Student's t distribution (with location and scale) |
plaque_psoriasis | Plaque psoriasis data |
plaque_psoriasis_agd | Plaque psoriasis data |
plaque_psoriasis_ipd | Plaque psoriasis data |
plogitnorm | The logit Normal distribution |
plogt | Log Student's t distribution |
plot.mcmc_array | Working with 3D MCMC arrays |
plot.nma_data | Network plots |
plot.nma_dic | Plots of model fit diagnostics |
plot.nma_nodesplit | Summarise the results of node-splitting models |
plot.nma_nodesplit_df | Summarise the results of node-splitting models |
plot.nma_parameter_summary | Plots of summary results |
plot.nma_rank_probs | Plots of summary results |
plot.nma_summary | Plots of summary results |
plot.nodesplit_summary | Plots of node-splitting models |
plot.stan_nma | Posterior summaries from 'stan_nma' objects |
plot.surv_nma_summary | Plots of summary results |
plot_integration_error | Plot numerical integration error |
plot_prior_posterior | Plot prior vs posterior distribution |
pmspline | Distribution functions for M-spline baseline hazards |
posterior_ranks | Treatment rankings and rank probabilities |
posterior_rank_probs | Treatment rankings and rank probabilities |
predict.stan_nma | Predictions of absolute effects from NMA models |
predict.stan_nma_surv | Predictions of absolute effects from NMA models |
print.mcmc_array | Working with 3D MCMC arrays |
print.mlnmr_data | Print 'nma_data' objects |
print.nma_data | Print 'nma_data' objects |
print.nma_dic | Print DIC details |
print.nma_nodesplit | Print 'nma_nodesplit_df' objects |
print.nma_nodesplit_df | Print 'nma_nodesplit_df' objects |
print.nma_summary | Methods for 'nma_summary' objects |
print.nodesplit_summary | Methods for 'nodesplit_summary' objects |
print.stan_nma | Print 'stan_nma' objects |
priors | Prior distributions |
qbern | The Bernoulli Distribution |
qgamma | The Gamma distribution |
qgent | Generalised Student's t distribution (with location and scale) |
qlogitnorm | The logit Normal distribution |
qlogt | Log Student's t distribution |
qmspline | Distribution functions for M-spline baseline hazards |
relative_effects | Relative treatment effects |
RE_cor | Random effects structure |
rmst_mspline | Distribution functions for M-spline baseline hazards |
set_agd_arm | Set up arm-based aggregate data |
set_agd_contrast | Set up contrast-based aggregate data |
set_agd_surv | Set up aggregate survival data |
set_ipd | Set up individual patient data |
smoking | Smoking cessation data |
stan_mlnmr | The stan_nma class |
stan_nma | The stan_nma class |
stan_nma-class | The stan_nma class |
statins | Statins for cholesterol lowering |
student_t | Prior distributions |
summary.mcmc_array | Working with 3D MCMC arrays |
summary.nma_nodesplit | Summarise the results of node-splitting models |
summary.nma_nodesplit_df | Summarise the results of node-splitting models |
summary.nma_prior | Summary of prior distributions |
summary.stan_nma | Posterior summaries from 'stan_nma' objects |
theme_multinma | Plot theme for multinma plots |
thrombolytics | Thrombolytic treatments data |
transfusion | Granulocyte transfusion in patients with neutropenia or neutrophil dysfunction |
unnest_integration | Add numerical integration points to aggregate data |
waic | Model comparison using the 'loo' package |
waic.stan_nma | Model comparison using the 'loo' package |
which_RE | Random effects structure |
.default | Set default values |
.is_default | Set default values |