mcmc_array-class {multinma} | R Documentation |
Working with 3D MCMC arrays
Description
3D MCMC arrays (Iterations, Chains, Parameters) are produced by as.array()
methods applied to stan_nma
or nma_summary
objects.
Usage
## S3 method for class 'mcmc_array'
summary(object, ..., probs = c(0.025, 0.25, 0.5, 0.75, 0.975))
## S3 method for class 'mcmc_array'
print(x, ...)
## S3 method for class 'mcmc_array'
plot(x, ...)
## S3 method for class 'mcmc_array'
names(x)
## S3 replacement method for class 'mcmc_array'
names(x) <- value
Arguments
... |
Further arguments passed to other methods |
probs |
Numeric vector of quantiles of interest |
x , object |
A 3D MCMC array of class |
value |
Character vector of replacement parameter names |
Value
The summary()
method returns a nma_summary object, the print()
method returns x
invisibly. The names()
method returns a character
vector of parameter names, and names()<-
returns the object with updated
parameter names. The plot()
method is a shortcut for
plot(summary(x), ...)
, passing all arguments on to plot.nma_summary()
.
Examples
## Smoking cessation
# Run smoking RE NMA example if not already available
if (!exists("smk_fit_RE")) example("example_smk_re", run.donttest = TRUE)
# Working with arrays of posterior draws (as mcmc_array objects) is
# convenient when transforming parameters
# Transforming log odds ratios to odds ratios
LOR_array <- as.array(relative_effects(smk_fit_RE))
OR_array <- exp(LOR_array)
# mcmc_array objects can be summarised to produce a nma_summary object
smk_OR_RE <- summary(OR_array)
# This can then be printed or plotted
smk_OR_RE
plot(smk_OR_RE, ref_line = 1)
# Transforming heterogeneity SD to variance
tau_array <- as.array(smk_fit_RE, pars = "tau")
tausq_array <- tau_array^2
# Correct parameter names
names(tausq_array) <- "tausq"
# Summarise
summary(tausq_array)
[Package multinma version 0.7.1 Index]