combine_network {multinma} | R Documentation |
Combine multiple data sources into one network
Description
Multiple data sources created using set_ipd()
, set_agd_arm()
, or
set_agd_contrast()
can be combined into a single network for analysis.
Usage
combine_network(..., trt_ref)
Arguments
... |
multiple data sources, as defined using the |
trt_ref |
reference treatment for the entire network, as a string (or coerced as such) referring to the levels of the treatment factor variable |
Value
An object of class nma_data
See Also
set_ipd()
, set_agd_arm()
, and set_agd_contrast()
for defining
different data sources.
print.nma_data()
for the print method displaying details of the
network, and plot.nma_data()
for network plots.
Examples
## Parkinson's - combining contrast- and arm-based data
studies <- parkinsons$studyn
(parkinsons_arm <- parkinsons[studies %in% 1:3, ])
(parkinsons_contr <- parkinsons[studies %in% 4:7, ])
park_arm_net <- set_agd_arm(parkinsons_arm,
study = studyn,
trt = trtn,
y = y,
se = se,
sample_size = n)
park_contr_net <- set_agd_contrast(parkinsons_contr,
study = studyn,
trt = trtn,
y = diff,
se = se_diff,
sample_size = n)
park_net <- combine_network(park_arm_net, park_contr_net)
# Print network details
park_net
# Plot network
plot(park_net, weight_edges = TRUE, weight_nodes = TRUE)
## Plaque Psoriasis - combining IPD and AgD in a network
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd,
studyc == "FIXTURE")
head(pso_ipd)
head(pso_agd)
pso_ipd <- pso_ipd %>%
mutate(# Variable transformations
bsa = bsa / 100,
prevsys = as.numeric(prevsys),
psa = as.numeric(psa),
weight = weight / 10,
durnpso = durnpso / 10,
# Treatment classes
trtclass = case_when(trtn == 1 ~ "Placebo",
trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
trtn == 4 ~ "TNFa blocker"),
# Check complete cases for covariates of interest
complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)
pso_agd <- pso_agd %>%
mutate(
# Variable transformations
bsa_mean = bsa_mean / 100,
bsa_sd = bsa_sd / 100,
prevsys = prevsys / 100,
psa = psa / 100,
weight_mean = weight_mean / 10,
weight_sd = weight_sd / 10,
durnpso_mean = durnpso_mean / 10,
durnpso_sd = durnpso_sd / 10,
# Treatment classes
trtclass = case_when(trtn == 1 ~ "Placebo",
trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
trtn == 4 ~ "TNFa blocker")
)
# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)
pso_net <- combine_network(
set_ipd(pso_ipd,
study = studyc,
trt = trtc,
r = pasi75,
trt_class = trtclass),
set_agd_arm(pso_agd,
study = studyc,
trt = trtc,
r = pasi75_r,
n = pasi75_n,
trt_class = trtclass)
)
# Print network details
pso_net
# Plot network
plot(pso_net, weight_nodes = TRUE, weight_edges = TRUE, show_trt_class = TRUE)
[Package multinma version 0.7.1 Index]