plot_integration_error {multinma} | R Documentation |
Plot numerical integration error
Description
For ML-NMR models, plot the estimated numerical integration error over the entire posterior distribution, as the number of integration points increases. See (Phillippo et al. 2020; Phillippo 2019) for details.
Usage
plot_integration_error(
x,
...,
stat = "violin",
orientation = c("vertical", "horizontal", "x", "y"),
show_expected_rate = TRUE
)
Arguments
x |
An object of type |
... |
Additional arguments passed to the |
stat |
Character string specifying the |
orientation |
Whether the |
show_expected_rate |
Logical, show typical convergence rate |
Details
The total number of integration points is set by the n_int
argument to add_integration()
, and the intervals at which integration
error is estimated are set by the int_thin
argument to nma()
. The
typical convergence rate of Quasi-Monte Carlo integration (as used here) is
1/N
, which by default is displayed on the plot output.
The integration error at each thinning interval N_\mathrm{thin}
is
estimated for each point in the posterior distribution by subtracting the
final estimate (using all n_int
points) from the estimate using only the
first N_\mathrm{thin}
points.
Value
A ggplot
object.
Note for survival models
This function is not supported for survival/time-to-event models. These do not save cumulative integration points for efficiency reasons (both time and memory).
Examples
## Plaque psoriasis ML-NMR
# Set up plaque psoriasis network combining IPD and AgD
library(dplyr)
pso_ipd <- filter(plaque_psoriasis_ipd,
studyc %in% c("UNCOVER-1", "UNCOVER-2", "UNCOVER-3"))
pso_agd <- filter(plaque_psoriasis_agd,
studyc == "FIXTURE")
head(pso_ipd)
head(pso_agd)
pso_ipd <- pso_ipd %>%
mutate(# Variable transformations
bsa = bsa / 100,
prevsys = as.numeric(prevsys),
psa = as.numeric(psa),
weight = weight / 10,
durnpso = durnpso / 10,
# Treatment classes
trtclass = case_when(trtn == 1 ~ "Placebo",
trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
trtn == 4 ~ "TNFa blocker"),
# Check complete cases for covariates of interest
complete = complete.cases(durnpso, prevsys, bsa, weight, psa)
)
pso_agd <- pso_agd %>%
mutate(
# Variable transformations
bsa_mean = bsa_mean / 100,
bsa_sd = bsa_sd / 100,
prevsys = prevsys / 100,
psa = psa / 100,
weight_mean = weight_mean / 10,
weight_sd = weight_sd / 10,
durnpso_mean = durnpso_mean / 10,
durnpso_sd = durnpso_sd / 10,
# Treatment classes
trtclass = case_when(trtn == 1 ~ "Placebo",
trtn %in% c(2, 3, 5, 6) ~ "IL blocker",
trtn == 4 ~ "TNFa blocker")
)
# Exclude small number of individuals with missing covariates
pso_ipd <- filter(pso_ipd, complete)
pso_net <- combine_network(
set_ipd(pso_ipd,
study = studyc,
trt = trtc,
r = pasi75,
trt_class = trtclass),
set_agd_arm(pso_agd,
study = studyc,
trt = trtc,
r = pasi75_r,
n = pasi75_n,
trt_class = trtclass)
)
# Print network details
pso_net
# Add integration points to the network
pso_net <- add_integration(pso_net,
durnpso = distr(qgamma, mean = durnpso_mean, sd = durnpso_sd),
prevsys = distr(qbern, prob = prevsys),
bsa = distr(qlogitnorm, mean = bsa_mean, sd = bsa_sd),
weight = distr(qgamma, mean = weight_mean, sd = weight_sd),
psa = distr(qbern, prob = psa),
n_int = 64)
# Fit the ML-NMR model
pso_fit <- nma(pso_net,
trt_effects = "fixed",
link = "probit",
likelihood = "bernoulli2",
regression = ~(durnpso + prevsys + bsa + weight + psa)*.trt,
class_interactions = "common",
prior_intercept = normal(scale = 10),
prior_trt = normal(scale = 10),
prior_reg = normal(scale = 10),
init_r = 0.1,
QR = TRUE,
# Set the thinning factor for saving the cumulative results
# (This also sets int_check = FALSE)
int_thin = 8)
pso_fit
# Plot numerical integration error
plot_integration_error(pso_fit)