A B C D E F G H I K L M N O P Q R S T V W X Y
alpha | Class "vm" |
alpha-method | Class "gausspr" |
alpha-method | Class "kfa" |
alpha-method | Class "kqr" |
alpha-method | Class "ksvm" |
alpha-method | Class "lssvm" |
alpha-method | Class "onlearn" |
alpha-method | Class "rvm" |
alpha-method | Class "vm" |
alphaindex | Class "ksvm" |
alphaindex-method | Class "gausspr" |
alphaindex-method | Class "kfa" |
alphaindex-method | Class "kqr" |
alphaindex-method | Class "ksvm" |
alphaindex-method | Class "lssvm" |
anovadot | Kernel Functions |
anovakernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
as.kernelMatrix | Assing kernelMatrix class to matrix objects |
as.kernelMatrix-method | Assing kernelMatrix class to matrix objects |
as.kernelMatrix-methods | Assing kernelMatrix class to matrix objects |
Asymbound | Kernel Maximum Mean Discrepancy. |
Asymbound-method | Class "kqr" |
AsympH0 | Kernel Maximum Mean Discrepancy. |
AsympH0-method | Class "kqr" |
b | Class "ksvm" |
b-method | Class "kqr" |
b-method | Class "ksvm" |
b-method | Class "lssvm" |
b-method | Class "onlearn" |
besseldot | Kernel Functions |
besselkernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
buffer | Class "onlearn" |
buffer-method | Class "onlearn" |
centers | Class "specc" |
centers-method | Class "specc" |
coef-method | Gaussian processes for regression and classification |
coef-method | Kernel Feature Analysis |
coef-method | Kernel Quantile Regression. |
coef-method | Class "ksvm" |
coef-method | Support Vector Machines |
coef-method | Least Squares Support Vector Machine |
coef-method | Relevance Vector Machine |
convergence | Class "ranking" |
convergence-method | Class "ranking" |
couple | Probabilities Coupling function |
cross | Class "vm" |
cross-method | Class "gausspr" |
cross-method | Class "kqr" |
cross-method | Class "ksvm" |
cross-method | Class "lssvm" |
cross-method | Class "rvm" |
cross-method | Class "vm" |
csi | Cholesky decomposition with Side Information |
csi-class | Class "csi" |
csi-method | Cholesky decomposition with Side Information |
csi-methods | Cholesky decomposition with Side Information |
diagresidues | Class "inchol" |
diagresidues-method | Class "csi" |
diagresidues-method | Class "inchol" |
dots | Kernel Functions |
dual | Class "ipop" |
dual-method | Class "ipop" |
edgegraph | Class "ranking" |
edgegraph-method | Class "ranking" |
eig | Class "prc" |
eig-method | Class "kha" |
eig-method | Class "kpca" |
eig-method | Class "prc" |
error | Class "vm" |
error-method | Class "gausspr" |
error-method | Class "kqr" |
error-method | Class "ksvm" |
error-method | Class "lssvm" |
error-method | Class "rvm" |
error-method | Class "vm" |
eskm-method | Class "kha" |
fit-method | Class "onlearn" |
fitted-method | Class "ksvm" |
fitted-method | Class "vm" |
fourierdot | Kernel Functions |
fourierkernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
gausspr | Gaussian processes for regression and classification |
gausspr-class | Class "gausspr" |
gausspr-method | Gaussian processes for regression and classification |
H0 | Kernel Maximum Mean Discrepancy. |
H0-method | Class "kqr" |
how | Class "ipop" |
how-method | Class "ipop" |
inchol | Incomplete Cholesky decomposition |
inchol-class | Class "inchol" |
inchol-method | Incomplete Cholesky decomposition |
income | Income Data |
inlearn | Onlearn object initialization |
inlearn-method | Onlearn object initialization |
ipop | Quadratic Programming Solver |
ipop-class | Class "ipop" |
ipop-method | Quadratic Programming Solver |
kcall | Class "vm" |
kcall-method | Class "gausspr" |
kcall-method | Class "kfa" |
kcall-method | Class "kha" |
kcall-method | Class "kpca" |
kcall-method | Class "kqr" |
kcall-method | Class "ksvm" |
kcall-method | Class "lssvm" |
kcall-method | Class "prc" |
kcall-method | Class "rvm" |
kcall-method | Class "vm" |
kcca | Kernel Canonical Correlation Analysis |
kcca-class | Class "kcca" |
kcca-method | Kernel Canonical Correlation Analysis |
kcor | Class "kcca" |
kcor-method | Class "kcca" |
kernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
kernelf | Class "vm" |
kernelf-method | Class "gausspr" |
kernelf-method | Class "kfa" |
kernelf-method | Class "kha" |
kernelf-method | Class "kqr" |
kernelf-method | Class "kpca" |
kernelf-method | Class "kqr" |
kernelf-method | Class "ksvm" |
kernelf-method | Class "lssvm" |
kernelf-method | Class "onlearn" |
kernelf-method | Class "prc" |
kernelf-method | Class "rvm" |
kernelf-method | Class "specc" |
kernelf-method | Class "vm" |
kernelFast | Kernel Matrix functions |
kernelFast-method | Kernel Matrix functions |
kernelMatrix | Kernel Matrix functions |
kernelMatrix-class | Assing kernelMatrix class to matrix objects |
kernelMatrix-method | Kernel Matrix functions |
kernelMult | Kernel Matrix functions |
kernelMult-method | Kernel Matrix functions |
kernelPol | Kernel Matrix functions |
kernelPol-method | Kernel Matrix functions |
kernels | Kernel Functions |
kfa | Kernel Feature Analysis |
kfa-class | Class "kfa" |
kfa-method | Kernel Feature Analysis |
kfunction | Kernel Functions |
kfunction-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
kha | Kernel Principal Components Analysis |
kha-class | Class "kha" |
kha-method | Kernel Principal Components Analysis |
kkmeans | Kernel k-means |
kkmeans-method | Kernel k-means |
kmmd | Kernel Maximum Mean Discrepancy. |
kmmd-class | Class "kqr" |
kmmd-method | Kernel Maximum Mean Discrepancy. |
kpar | Kernel Functions |
kpar-method | Class "gausspr" |
kpar-method | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
kpar-method | Class "kqr" |
kpar-method | Class "ksvm" |
kpar-method | Class "lssvm" |
kpar-method | Class "onlearn" |
kpar-method | Class "rvm" |
kpar-method | Class "vm" |
kpca | Kernel Principal Components Analysis |
kpca-class | Class "kpca" |
kpca-method | Kernel Principal Components Analysis |
kqr | Kernel Quantile Regression. |
kqr-class | Class "kqr" |
kqr-method | Kernel Quantile Regression. |
ksvm | Support Vector Machines |
ksvm-class | Class "ksvm" |
ksvm-method | Support Vector Machines |
laplacedot | Kernel Functions |
laplacekernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
lev | Class "vm" |
lev-method | Class "gausspr" |
lev-method | Class "ksvm" |
lev-method | Class "lssvm" |
lev-method | Class "rvm" |
lev-method | Class "vm" |
lssvm | Least Squares Support Vector Machine |
lssvm-class | Class "lssvm" |
lssvm-method | Least Squares Support Vector Machine |
lssvm-methods | Least Squares Support Vector Machine |
maxresiduals | Class "inchol" |
maxresiduals-method | Class "csi" |
maxresiduals-method | Class "inchol" |
mlike | Class "rvm" |
mlike-method | Class "rvm" |
mmdstats | Kernel Maximum Mean Discrepancy. |
mmdstats-method | Class "kqr" |
musk | Musk data set |
nSV | Class "ksvm" |
nSV-method | Class "ksvm" |
nSV-method | Class "lssvm" |
nvar | Class "rvm" |
nvar-method | Class "rvm" |
obj | Class "ksvm" |
obj-method | Class "ksvm" |
onlearn | Kernel Online Learning algorithms |
onlearn-class | Class "onlearn" |
onlearn-method | Kernel Online Learning algorithms |
param | Class "ksvm" |
param-method | Class "kqr" |
param-method | Class "ksvm" |
param-method | Class "lssvm" |
pcv | Class "prc" |
pcv-method | Class "kha" |
pcv-method | Class "kpca" |
pcv-method | Class "prc" |
pivots | Class "inchol" |
pivots-method | Class "csi" |
pivots-method | Class "inchol" |
plot-method | plot method for support vector object |
plot.ksvm | plot method for support vector object |
polydot | Kernel Functions |
polykernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
prc-class | Class "prc" |
predgain | Class "csi" |
predgain-method | Class "csi" |
predict-method | Class "kfa" |
predict-method | Kernel Principal Components Analysis |
predict-method | Kernel Principal Components Analysis |
predict-method | Least Squares Support Vector Machine |
predict-method | Class "onlearn" |
predict-method | predict method for Gaussian Processes object |
predict-method | Predict method for kernel Quantile Regression object |
predict-method | predict method for support vector object |
predict-method | Relevance Vector Machine |
predict.gausspr | predict method for Gaussian Processes object |
predict.kqr | Predict method for kernel Quantile Regression object |
predict.ksvm | predict method for support vector object |
primal | Class "ipop" |
primal-method | Class "ipop" |
prior | Class "ksvm" |
prior-method | Class "ksvm" |
prob.model | Class "ksvm" |
prob.model-method | Class "ksvm" |
promotergene | E. coli promoter gene sequences (DNA) |
Q | Class "csi" |
Q-method | Class "csi" |
R | Class "csi" |
R-method | Class "csi" |
Radbound | Kernel Maximum Mean Discrepancy. |
Radbound-method | Class "kqr" |
ranking | Ranking |
ranking-class | Class "ranking" |
ranking-method | Ranking |
rbfdot | Kernel Functions |
rbfkernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
reuters | Reuters Text Data |
rho | Class "onlearn" |
rho-method | Class "onlearn" |
rlabels | Reuters Text Data |
rotated | Class "kpca" |
rotated-method | Class "kpca" |
RVindex | Class "rvm" |
RVindex-method | Class "rvm" |
rvm | Relevance Vector Machine |
rvm-class | Class "rvm" |
rvm-method | Relevance Vector Machine |
rvm-methods | Relevance Vector Machine |
scaling | Class "ksvm" |
scaling-method | Class "gausspr" |
scaling-method | Class "kqr" |
scaling-method | Class "ksvm" |
scaling-method | Class "lssvm" |
show | Class "ksvm" |
show-method | Kernel Functions |
show-method | Gaussian processes for regression and classification |
show-method | Kernel Feature Analysis |
show-method | Kernel Maximum Mean Discrepancy. |
show-method | Kernel Quantile Regression. |
show-method | Support Vector Machines |
show-method | Least Squares Support Vector Machine |
show-method | Class "onlearn" |
show-method | Class "ranking" |
show-method | Relevance Vector Machine |
show-method | Spectral Clustering |
sigest | Hyperparameter estimation for the Gaussian Radial Basis kernel |
sigest-method | Hyperparameter estimation for the Gaussian Radial Basis kernel |
size | Class "specc" |
size-method | Class "specc" |
spam | Spam E-mail Database |
specc | Spectral Clustering |
specc-class | Class "specc" |
specc-method | Spectral Clustering |
spirals | Spirals Dataset |
splinedot | Kernel Functions |
splinekernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
stringdot | String Kernel Functions |
stringkernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
SVindex | Class "ksvm" |
SVindex-method | Class "ksvm" |
tanhdot | Kernel Functions |
tanhkernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
ticdata | The Insurance Company Data |
truegain | Class "csi" |
truegain-method | Class "csi" |
type | Class "vm" |
type-method | Class "gausspr" |
type-method | Class "ksvm" |
type-method | Class "lssvm" |
type-method | Class "onlearn" |
type-method | Class "rvm" |
type-method | Class "vm" |
vanilladot | Kernel Functions |
vanillakernel-class | Class "kernel" "rbfkernel" "polykernel", "tanhkernel", "vanillakernel" |
vm-class | Class "vm" |
withinss | Class "specc" |
withinss-method | Class "specc" |
xcoef | Class "kcca" |
xcoef-method | Class "kcca" |
xmatrix | Class "vm" |
xmatrix-method | Class "gausspr" |
xmatrix-method | Class "kfa" |
xmatrix-method | Class "kha" |
xmatrix-method | Class "kpca" |
xmatrix-method | Class "kqr" |
xmatrix-method | Class "ksvm" |
xmatrix-method | Class "lssvm" |
xmatrix-method | Class "onlearn" |
xmatrix-method | Class "prc" |
xmatrix-method | Class "rvm" |
xmatrix-method | Class "vm" |
xvar-method | Class "kcca" |
ycoef | Class "kcca" |
ycoef-method | Class "kcca" |
ymatrix | Class "vm" |
ymatrix-method | Class "gausspr" |
ymatrix-method | Class "kqr" |
ymatrix-method | Class "ksvm" |
ymatrix-method | Class "lssvm" |
ymatrix-method | Class "rvm" |
ymatrix-method | Class "vm" |
yvar-method | Class "kcca" |