csi-class {kernlab} | R Documentation |
Class "csi"
Description
The reduced Cholesky decomposition object
Objects from the Class
Objects can be created by calls of the form new("csi", ...)
.
or by calling the csi
function.
Slots
.Data
:Object of class
"matrix"
contains the decomposed matrixpivots
:Object of class
"vector"
contains the pivots performeddiagresidues
:Object of class
"vector"
contains the diagonial residuesmaxresiduals
:Object of class
"vector"
contains the maximum residues- predgain
Object of class
"vector"
contains the predicted gain before adding each column- truegain
Object of class
"vector"
contains the actual gain after adding each column- Q
Object of class
"matrix"
contains Q from the QR decomposition of the kernel matrix- R
Object of class
"matrix"
contains R from the QR decomposition of the kernel matrix
Extends
Class "matrix"
, directly.
Methods
- diagresidues
signature(object = "csi")
: returns the diagonial residues- maxresiduals
signature(object = "csi")
: returns the maximum residues- pivots
signature(object = "csi")
: returns the pivots performed- predgain
signature(object = "csi")
: returns the predicted gain before adding each column- truegain
signature(object = "csi")
: returns the actual gain after adding each column- Q
signature(object = "csi")
: returns Q from the QR decomposition of the kernel matrix- R
signature(object = "csi")
: returns R from the QR decomposition of the kernel matrix
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
data(iris)
## create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1
datamatrix <- as.matrix(iris[,-5])
# initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
# calculate kernel matrix
K <- crossprod(t(Z))
# difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]