| csi-class {kernlab} | R Documentation |
Class "csi"
Description
The reduced Cholesky decomposition object
Objects from the Class
Objects can be created by calls of the form new("csi", ...).
or by calling the csi function.
Slots
.Data:Object of class
"matrix"contains the decomposed matrixpivots:Object of class
"vector"contains the pivots performeddiagresidues:Object of class
"vector"contains the diagonial residuesmaxresiduals:Object of class
"vector"contains the maximum residues- predgain
Object of class
"vector"contains the predicted gain before adding each column- truegain
Object of class
"vector"contains the actual gain after adding each column- Q
Object of class
"matrix"contains Q from the QR decomposition of the kernel matrix- R
Object of class
"matrix"contains R from the QR decomposition of the kernel matrix
Extends
Class "matrix", directly.
Methods
- diagresidues
signature(object = "csi"): returns the diagonial residues- maxresiduals
signature(object = "csi"): returns the maximum residues- pivots
signature(object = "csi"): returns the pivots performed- predgain
signature(object = "csi"): returns the predicted gain before adding each column- truegain
signature(object = "csi"): returns the actual gain after adding each column- Q
signature(object = "csi"): returns Q from the QR decomposition of the kernel matrix- R
signature(object = "csi"): returns R from the QR decomposition of the kernel matrix
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
data(iris)
## create multidimensional y matrix
yind <- t(matrix(1:3,3,150))
ymat <- matrix(0, 150, 3)
ymat[yind==as.integer(iris[,5])] <- 1
datamatrix <- as.matrix(iris[,-5])
# initialize kernel function
rbf <- rbfdot(sigma=0.1)
rbf
Z <- csi(datamatrix,ymat, kernel=rbf, rank = 30)
dim(Z)
pivots(Z)
# calculate kernel matrix
K <- crossprod(t(Z))
# difference between approximated and real kernel matrix
(K - kernelMatrix(kernel=rbf, datamatrix))[6,]