| onlearn-class {kernlab} | R Documentation |
Class "onlearn"
Description
The class of objects used by the Kernel-based Online learning algorithms
Objects from the Class
Objects can be created by calls of the form new("onlearn", ...).
or by calls to the function inlearn.
Slots
kernelf:Object of class
"function"containing the used kernel functionbuffer:Object of class
"numeric"containing the size of the bufferkpar:Object of class
"list"containing the hyperparameters of the kernel function.xmatrix:Object of class
"matrix"containing the data points (similar to support vectors)fit:Object of class
"numeric"containing the decision function value of the last data pointonstart:Object of class
"numeric"used for indexingonstop:Object of class
"numeric"used for indexingalpha:Object of class
"ANY"containing the model parametersrho:Object of class
"numeric"containing model parameterb:Object of class
"numeric"containing the offsetpattern:Object of class
"factor"used for dealing with factorstype:Object of class
"character"containing the problem type (classification, regression, or novelty
Methods
- alpha
signature(object = "onlearn"): returns the model parameters- b
signature(object = "onlearn"): returns the offset- buffer
signature(object = "onlearn"): returns the buffer size- fit
signature(object = "onlearn"): returns the last decision function value- kernelf
signature(object = "onlearn"): return the kernel function used- kpar
signature(object = "onlearn"): returns the hyper-parameters used- onlearn
signature(obj = "onlearn"): the learning function- predict
signature(object = "onlearn"): the predict function- rho
signature(object = "onlearn"): returns model parameter- show
signature(object = "onlearn"): show function- type
signature(object = "onlearn"): returns the type of problem- xmatrix
signature(object = "onlearn"): returns the stored data points
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
## create toy data set
x <- rbind(matrix(rnorm(100),,2),matrix(rnorm(100)+3,,2))
y <- matrix(c(rep(1,50),rep(-1,50)),,1)
## initialize onlearn object
on <- inlearn(2,kernel="rbfdot",kpar=list(sigma=0.2),
type="classification")
## learn one data point at the time
for(i in sample(1:100,100))
on <- onlearn(on,x[i,],y[i],nu=0.03,lambda=0.1)
sign(predict(on,x))