kpca-class {kernlab} | R Documentation |
Class "kpca"
Description
The Kernel Principal Components Analysis class
Objects of class "kpca"
Objects can be created by calls of the form new("kpca", ...)
.
or by calling the kpca
function.
Slots
pcv
:Object of class
"matrix"
containing the principal component vectorseig
:Object of class
"vector"
containing the corresponding eigenvaluesrotated
:Object of class
"matrix"
containing the projection of the data on the principal componentskernelf
:Object of class
"function"
containing the kernel function usedkpar
:Object of class
"list"
containing the kernel parameters usedxmatrix
:Object of class
"matrix"
containing the data matrix usedkcall
:Object of class
"ANY"
containing the function calln.action
:Object of class
"ANY"
containing the action performed on NA
Methods
- eig
signature(object = "kpca")
: returns the eigenvalues- kcall
signature(object = "kpca")
: returns the performed call- kernelf
signature(object = "kpca")
: returns the used kernel function- pcv
signature(object = "kpca")
: returns the principal component vectors- predict
signature(object = "kpca")
: embeds new data- rotated
signature(object = "kpca")
: returns the projected data- xmatrix
signature(object = "kpca")
: returns the used data matrix
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
# another example using the iris
data(iris)
test <- sample(1:50,20)
kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2)
#print the principal component vectors
pcv(kpc)
rotated(kpc)
kernelf(kpc)
eig(kpc)