| kpca-class {kernlab} | R Documentation |
Class "kpca"
Description
The Kernel Principal Components Analysis class
Objects of class "kpca"
Objects can be created by calls of the form new("kpca", ...).
or by calling the kpca function.
Slots
pcv:Object of class
"matrix"containing the principal component vectorseig:Object of class
"vector"containing the corresponding eigenvaluesrotated:Object of class
"matrix"containing the projection of the data on the principal componentskernelf:Object of class
"function"containing the kernel function usedkpar:Object of class
"list"containing the kernel parameters usedxmatrix:Object of class
"matrix"containing the data matrix usedkcall:Object of class
"ANY"containing the function calln.action:Object of class
"ANY"containing the action performed on NA
Methods
- eig
signature(object = "kpca"): returns the eigenvalues- kcall
signature(object = "kpca"): returns the performed call- kernelf
signature(object = "kpca"): returns the used kernel function- pcv
signature(object = "kpca"): returns the principal component vectors- predict
signature(object = "kpca"): embeds new data- rotated
signature(object = "kpca"): returns the projected data- xmatrix
signature(object = "kpca"): returns the used data matrix
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
# another example using the iris
data(iris)
test <- sample(1:50,20)
kpc <- kpca(~.,data=iris[-test,-5],kernel="rbfdot",
kpar=list(sigma=0.2),features=2)
#print the principal component vectors
pcv(kpc)
rotated(kpc)
kernelf(kpc)
eig(kpc)