lssvm-class {kernlab} | R Documentation |
Class "lssvm"
Description
The Gaussian Processes object
Objects from the Class
Objects can be created by calls of the form new("lssvm", ...)
.
or by calling the lssvm
function
Slots
kernelf
:Object of class
"kfunction"
contains the kernel function usedkpar
:Object of class
"list"
contains the kernel parameter usedparam
:Object of class
"list"
contains the regularization parameter used.kcall
:Object of class
"call"
contains the used function calltype
:Object of class
"character"
contains type of problemcoef
:Object of class
"ANY"
contains the model parameterterms
:Object of class
"ANY"
contains the terms representation of the symbolic model used (when using a formula)xmatrix
:Object of class
"matrix"
containing the data matrix usedymatrix
:Object of class
"output"
containing the response matrixfitted
:Object of class
"output"
containing the fitted valuesb
:Object of class
"numeric"
containing the offsetlev
:Object of class
"vector"
containing the levels of the response (in case of classification)scaling
:Object of class
"ANY"
containing the scaling information performed on the datanclass
:Object of class
"numeric"
containing the number of classes (in case of classification)alpha
:Object of class
"listI"
containing the computes alpha valuesalphaindex
Object of class
"list"
containing the indexes for the alphas in various classes (in multi-class problems).error
:Object of class
"numeric"
containing the training errorcross
:Object of class
"numeric"
containing the cross validation errorn.action
:Object of class
"ANY"
containing the action performed in NAnSV
:Object of class
"numeric"
containing the number of model parameters
Methods
- alpha
signature(object = "lssvm")
: returns the alpha vector- cross
signature(object = "lssvm")
: returns the cross validation error- error
signature(object = "lssvm")
: returns the training error- fitted
signature(object = "vm")
: returns the fitted values- kcall
signature(object = "lssvm")
: returns the call performed- kernelf
signature(object = "lssvm")
: returns the kernel function used- kpar
signature(object = "lssvm")
: returns the kernel parameter used- param
signature(object = "lssvm")
: returns the regularization parameter used- lev
signature(object = "lssvm")
: returns the response levels (in classification)- type
signature(object = "lssvm")
: returns the type of problem- scaling
signature(object = "ksvm")
: returns the scaling values- xmatrix
signature(object = "lssvm")
: returns the data matrix used- ymatrix
signature(object = "lssvm")
: returns the response matrix used
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)