| lssvm-class {kernlab} | R Documentation |
Class "lssvm"
Description
The Gaussian Processes object
Objects from the Class
Objects can be created by calls of the form new("lssvm", ...).
or by calling the lssvm function
Slots
kernelf:Object of class
"kfunction"contains the kernel function usedkpar:Object of class
"list"contains the kernel parameter usedparam:Object of class
"list"contains the regularization parameter used.kcall:Object of class
"call"contains the used function calltype:Object of class
"character"contains type of problemcoef:Object of class
"ANY"contains the model parameterterms:Object of class
"ANY"contains the terms representation of the symbolic model used (when using a formula)xmatrix:Object of class
"matrix"containing the data matrix usedymatrix:Object of class
"output"containing the response matrixfitted:Object of class
"output"containing the fitted valuesb:Object of class
"numeric"containing the offsetlev:Object of class
"vector"containing the levels of the response (in case of classification)scaling:Object of class
"ANY"containing the scaling information performed on the datanclass:Object of class
"numeric"containing the number of classes (in case of classification)alpha:Object of class
"listI"containing the computes alpha valuesalphaindexObject of class
"list"containing the indexes for the alphas in various classes (in multi-class problems).error:Object of class
"numeric"containing the training errorcross:Object of class
"numeric"containing the cross validation errorn.action:Object of class
"ANY"containing the action performed in NAnSV:Object of class
"numeric"containing the number of model parameters
Methods
- alpha
signature(object = "lssvm"): returns the alpha vector- cross
signature(object = "lssvm"): returns the cross validation error- error
signature(object = "lssvm"): returns the training error- fitted
signature(object = "vm"): returns the fitted values- kcall
signature(object = "lssvm"): returns the call performed- kernelf
signature(object = "lssvm"): returns the kernel function used- kpar
signature(object = "lssvm"): returns the kernel parameter used- param
signature(object = "lssvm"): returns the regularization parameter used- lev
signature(object = "lssvm"): returns the response levels (in classification)- type
signature(object = "lssvm"): returns the type of problem- scaling
signature(object = "ksvm"): returns the scaling values- xmatrix
signature(object = "lssvm"): returns the data matrix used- ymatrix
signature(object = "lssvm"): returns the response matrix used
Author(s)
Alexandros Karatzoglou
alexandros.karatzoglou@ci.tuwien.ac.at
See Also
Examples
# train model
data(iris)
test <- lssvm(Species~.,data=iris,var=2)
test
alpha(test)
error(test)
lev(test)