agaricus.test | Test part from Mushroom Data Set |
agaricus.train | Training part from Mushroom Data Set |
bank | Bank Marketing Data Set |
coords | Example data for the GPBoost package |
coords_test | Example data for the GPBoost package |
dim.gpb.Dataset | Dimensions of an 'gpb.Dataset' |
dimnames.gpb.Dataset | Handling of column names of 'gpb.Dataset' |
dimnames<-.gpb.Dataset | Handling of column names of 'gpb.Dataset' |
fit | Generic 'fit' method for a 'GPModel' |
fit.GPModel | Fits a 'GPModel' |
fitGPModel | Fits a 'GPModel' |
getinfo | Get information of an 'gpb.Dataset' object |
getinfo.gpb.Dataset | Get information of an 'gpb.Dataset' object |
get_aux_pars | Get (estimated) auxiliary (additional) parameters of the likelihood |
get_aux_pars.GPModel | Get (estimated) auxiliary (additional) parameters of the likelihood |
get_coef | Get (estimated) linear regression coefficients |
get_coef.GPModel | Get (estimated) linear regression coefficients |
get_cov_pars | Get (estimated) covariance parameters |
get_cov_pars.GPModel | Get (estimated) covariance parameters |
get_nested_categories | Auxiliary function to create categorical variables for nested grouped random effects |
gpb.convert_with_rules | Data preparator for GPBoost datasets with rules (integer) |
gpb.cv | CV function for number of boosting iterations |
gpb.Dataset | Construct 'gpb.Dataset' object |
gpb.Dataset.construct | Construct Dataset explicitly |
gpb.Dataset.create.valid | Construct validation data |
gpb.Dataset.save | Save 'gpb.Dataset' to a binary file |
gpb.Dataset.set.categorical | Set categorical feature of 'gpb.Dataset' |
gpb.Dataset.set.reference | Set reference of 'gpb.Dataset' |
gpb.dump | Dump GPBoost model to json |
gpb.get.eval.result | Get record evaluation result from booster |
gpb.grid.search.tune.parameters | Function for choosing tuning parameters |
gpb.importance | Compute feature importance in a model |
gpb.interprete | Compute feature contribution of prediction |
gpb.load | Load GPBoost model |
gpb.model.dt.tree | Parse a GPBoost model json dump |
gpb.plot.importance | Plot feature importance as a bar graph |
gpb.plot.interpretation | Plot feature contribution as a bar graph |
gpb.plot.part.dep.interact | Plot interaction partial dependence plots |
gpb.plot.partial.dependence | Plot partial dependence plots |
gpb.save | Save GPBoost model |
gpb.train | Main training logic for GBPoost |
gpboost | Train a GPBoost model |
GPBoost_data | Example data for the GPBoost package |
GPModel | Create a 'GPModel' object |
GPModel_shared_params | Documentation for parameters shared by 'GPModel', 'gpb.cv', and 'gpboost' |
group_data | Example data for the GPBoost package |
group_data_test | Example data for the GPBoost package |
loadGPModel | Load a 'GPModel' from a file |
neg_log_likelihood | Evaluate the negative log-likelihood |
neg_log_likelihood.GPModel | Evaluate the negative log-likelihood |
predict.gpb.Booster | Prediction function for 'gpb.Booster' objects |
predict.GPModel | Make predictions for a 'GPModel' |
predict_training_data_random_effects | Predict ("estimate") training data random effects for a 'GPModel' |
predict_training_data_random_effects.GPModel | Predict ("estimate") training data random effects for a 'GPModel' |
readRDS.gpb.Booster | readRDS for 'gpb.Booster' models |
saveGPModel | Save a 'GPModel' |
saveRDS.gpb.Booster | saveRDS for 'gpb.Booster' models |
setinfo | Set information of an 'gpb.Dataset' object |
setinfo.gpb.Dataset | Set information of an 'gpb.Dataset' object |
set_optim_params | Set parameters for estimation of the covariance parameters |
set_optim_params.GPModel | Set parameters for estimation of the covariance parameters |
set_prediction_data | Set prediction data for a 'GPModel' |
set_prediction_data.GPModel | Set prediction data for a 'GPModel' |
slice | Slice a dataset |
slice.gpb.Dataset | Slice a dataset |
summary.GPModel | Summary for a 'GPModel' |
X | Example data for the GPBoost package |
X_test | Example data for the GPBoost package |
y | Example data for the GPBoost package |