gpb.train {gpboost} | R Documentation |
Main training logic for GBPoost
Description
Logic to train with GBPoost
Usage
gpb.train(params = list(), data, nrounds = 100L, gp_model = NULL,
use_gp_model_for_validation = TRUE, train_gp_model_cov_pars = TRUE,
valids = list(), obj = NULL, eval = NULL, verbose = 1L,
record = TRUE, eval_freq = 1L, init_model = NULL, colnames = NULL,
categorical_feature = NULL, early_stopping_rounds = NULL,
callbacks = list(), reset_data = FALSE, ...)
Arguments
params |
list of "tuning" parameters. See the parameter documentation for more information. A few key parameters:
|
data |
a |
nrounds |
number of boosting iterations (= number of trees). This is the most important tuning parameter for boosting |
gp_model |
A |
use_gp_model_for_validation |
Boolean. If TRUE, the |
train_gp_model_cov_pars |
Boolean. If TRUE, the covariance parameters
of the |
valids |
a list of |
obj |
(character) The distribution of the response variable (=label) conditional on fixed and random effects. This only needs to be set when doing independent boosting without random effects / Gaussian processes. |
eval |
Evaluation metric to be monitored when doing CV and parameter tuning. This can be a string, function, or list with a mixture of strings and functions.
|
verbose |
verbosity for output, if <= 0, also will disable the print of evaluation during training |
record |
Boolean, TRUE will record iteration message to |
eval_freq |
evaluation output frequency, only effect when verbose > 0 |
init_model |
path of model file of |
colnames |
feature names, if not null, will use this to overwrite the names in dataset |
categorical_feature |
categorical features. This can either be a character vector of feature
names or an integer vector with the indices of the features (e.g.
|
early_stopping_rounds |
int. Activates early stopping. Requires at least one validation data
and one metric. When this parameter is non-null,
training will stop if the evaluation of any metric on any validation set
fails to improve for |
callbacks |
List of callback functions that are applied at each iteration. |
reset_data |
Boolean, setting it to TRUE (not the default value) will transform the booster model into a predictor model which frees up memory and the original datasets |
... |
other parameters, see the parameter documentation for more information. |
Value
a trained booster model gpb.Booster
.
Early Stopping
"early stopping" refers to stopping the training process if the model's performance on a given validation set does not improve for several consecutive iterations.
If multiple arguments are given to eval
, their order will be preserved. If you enable
early stopping by setting early_stopping_rounds
in params
, by default all
metrics will be considered for early stopping.
If you want to only consider the first metric for early stopping, pass
first_metric_only = TRUE
in params
. Note that if you also specify metric
in params
, that metric will be considered the "first" one. If you omit metric
,
a default metric will be used based on your choice for the parameter obj
(keyword argument)
or objective
(passed into params
).
Author(s)
Fabio Sigrist, authors of the LightGBM R package
Examples
# See https://github.com/fabsig/GPBoost/tree/master/R-package for more examples
library(gpboost)
data(GPBoost_data, package = "gpboost")
#--------------------Combine tree-boosting and grouped random effects model----------------
# Create random effects model
gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
# The default optimizer for covariance parameters (hyperparameters) is
# Nesterov-accelerated gradient descent.
# This can be changed to, e.g., Nelder-Mead as follows:
# re_params <- list(optimizer_cov = "nelder_mead")
# gp_model$set_optim_params(params=re_params)
# Use trace = TRUE to monitor convergence:
# re_params <- list(trace = TRUE)
# gp_model$set_optim_params(params=re_params)
dtrain <- gpb.Dataset(data = X, label = y)
# Train model
bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 0)
# Estimated random effects model
summary(gp_model)
# Make predictions
pred <- predict(bst, data = X_test, group_data_pred = group_data_test[,1],
predict_var= TRUE)
pred$random_effect_mean # Predicted mean
pred$random_effect_cov # Predicted variances
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to otbain a single prediction
pred$random_effect_mean + pred$fixed_effect
#--------------------Combine tree-boosting and Gaussian process model----------------
# Create Gaussian process model
gp_model <- GPModel(gp_coords = coords, cov_function = "exponential",
likelihood = "gaussian")
# Train model
dtrain <- gpb.Dataset(data = X, label = y)
bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 16,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 0)
# Estimated random effects model
summary(gp_model)
# Make predictions
pred <- predict(bst, data = X_test, gp_coords_pred = coords_test,
predict_cov_mat =TRUE)
pred$random_effect_mean # Predicted (posterior) mean of GP
pred$random_effect_cov # Predicted (posterior) covariance matrix of GP
pred$fixed_effect # Predicted fixed effect from tree ensemble
# Sum them up to otbain a single prediction
pred$random_effect_mean + pred$fixed_effect
#--------------------Using validation data-------------------------
set.seed(1)
train_ind <- sample.int(length(y),size=250)
dtrain <- gpb.Dataset(data = X[train_ind,], label = y[train_ind])
dtest <- gpb.Dataset.create.valid(dtrain, data = X[-train_ind,], label = y[-train_ind])
valids <- list(test = dtest)
gp_model <- GPModel(group_data = group_data[train_ind,1], likelihood="gaussian")
# Need to set prediction data for gp_model
gp_model$set_prediction_data(group_data_pred = group_data[-train_ind,1])
# Training with validation data and use_gp_model_for_validation = TRUE
bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 100,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 1, valids = valids,
early_stopping_rounds = 10, use_gp_model_for_validation = TRUE)
print(paste0("Optimal number of iterations: ", bst$best_iter,
", best test error: ", bst$best_score))
# Plot validation error
val_error <- unlist(bst$record_evals$test$l2$eval)
plot(1:length(val_error), val_error, type="l", lwd=2, col="blue",
xlab="iteration", ylab="Validation error", main="Validation error vs. boosting iteration")
#--------------------Do Newton updates for tree leaves---------------
# Note: run the above examples first
bst <- gpb.train(data = dtrain, gp_model = gp_model, nrounds = 100,
learning_rate = 0.05, max_depth = 6, min_data_in_leaf = 5,
verbose = 1, valids = valids,
early_stopping_rounds = 5, use_gp_model_for_validation = FALSE,
leaves_newton_update = TRUE)
print(paste0("Optimal number of iterations: ", bst$best_iter,
", best test error: ", bst$best_score))
# Plot validation error
val_error <- unlist(bst$record_evals$test$l2$eval)
plot(1:length(val_error), val_error, type="l", lwd=2, col="blue",
xlab="iteration", ylab="Validation error", main="Validation error vs. boosting iteration")
#--------------------GPBoostOOS algorithm: GP parameters estimated out-of-sample----------------
# Create random effects model and dataset
gp_model <- GPModel(group_data = group_data[,1], likelihood="gaussian")
dtrain <- gpb.Dataset(X, label = y)
params <- list(learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5)
# Stage 1: run cross-validation to (i) determine to optimal number of iterations
# and (ii) to estimate the GPModel on the out-of-sample data
cvbst <- gpb.cv(params = params,
data = dtrain,
gp_model = gp_model,
nrounds = 100,
nfold = 4,
eval = "l2",
early_stopping_rounds = 5,
use_gp_model_for_validation = TRUE,
fit_GP_cov_pars_OOS = TRUE)
print(paste0("Optimal number of iterations: ", cvbst$best_iter))
# Estimated random effects model
# Note: ideally, one would have to find the optimal combination of
# other tuning parameters such as the learning rate, tree depth, etc.)
summary(gp_model)
# Stage 2: Train tree-boosting model while holding the GPModel fix
bst <- gpb.train(data = dtrain,
gp_model = gp_model,
nrounds = cvbst$best_iter,
learning_rate = 0.05,
max_depth = 6,
min_data_in_leaf = 5,
verbose = 0,
train_gp_model_cov_pars = FALSE)
# The GPModel has not changed:
summary(gp_model)