gpb.plot.partial.dependence {gpboost}R Documentation

Plot partial dependence plots

Description

Plot partial dependence plots

Usage

gpb.plot.partial.dependence(model, data, variable, n.pt = 100,
  subsample = pmin(1, n.pt * 100/nrow(data)), discrete.x = FALSE,
  which.class = NULL, xlab = deparse(substitute(variable)), ylab = "",
  type = if (discrete.x) "p" else "b", main = "",
  return_plot_data = FALSE, ...)

Arguments

model

A gpb.Booster model object

data

A matrix with data for creating partial dependence plots

variable

A string with a name of the column or an integer with an index of the column in data for which a dependence plot is created

n.pt

Evaluation grid size (used only if x is not discrete)

subsample

Fraction of random samples in data to be used for calculating the partial dependence plot

discrete.x

A boolean. If TRUE, the evaluation grid is set to the unique values of x

which.class

An integer indicating the class in multi-class classification (value from 0 to num_class - 1)

xlab

Parameter passed to plot

ylab

Parameter passed to plot

type

Parameter passed to plot

main

Parameter passed to plot

return_plot_data

A boolean. If TRUE, the data for creating the partial dependence plot is returned

...

Additional parameters passed to plot

Value

A two-dimensional matrix with data for creating the partial dependence plot. This is only returned if return_plot_data==TRUE

Author(s)

Fabio Sigrist (adapted from a version by Michael Mayer)

Examples


library(gpboost)
data(GPBoost_data, package = "gpboost")

gp_model <- GPModel(group_data = group_data[,1], likelihood = "gaussian")
gpboost_model <- gpboost(data = X,
                         label = y,
                         gp_model = gp_model,
                         nrounds = 16,
                         learning_rate = 0.05,
                         max_depth = 6,
                         min_data_in_leaf = 5,
                         verbose = 0)
gpb.plot.partial.dependence(gpboost_model, X, variable = 1)


[Package gpboost version 1.5.1.1 Index]