gpb.plot.interpretation {gpboost} | R Documentation |
Plot feature contribution as a bar graph
Description
Plot previously calculated feature contribution as a bar graph.
Usage
gpb.plot.interpretation(tree_interpretation_dt, top_n = 10L, cols = 1L,
left_margin = 10L, cex = NULL)
Arguments
tree_interpretation_dt |
a |
top_n |
maximal number of top features to include into the plot. |
cols |
the column numbers of layout, will be used only for multiclass classification feature contribution. |
left_margin |
(base R barplot) allows to adjust the left margin size to fit feature names. |
cex |
(base R barplot) passed as |
Details
The graph represents each feature as a horizontal bar of length proportional to the defined contribution of a feature. Features are shown ranked in a decreasing contribution order.
Value
The gpb.plot.interpretation
function creates a barplot
.
Examples
Logit <- function(x) {
log(x / (1.0 - x))
}
data(agaricus.train, package = "gpboost")
labels <- agaricus.train$label
dtrain <- gpb.Dataset(
agaricus.train$data
, label = labels
)
setinfo(dtrain, "init_score", rep(Logit(mean(labels)), length(labels)))
data(agaricus.test, package = "gpboost")
params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
params = params
, data = dtrain
, nrounds = 5L
)
tree_interpretation <- gpb.interprete(
model = model
, data = agaricus.test$data
, idxset = 1L:5L
)
gpb.plot.interpretation(
tree_interpretation_dt = tree_interpretation[[1L]]
, top_n = 3L
)
[Package gpboost version 1.5.1.1 Index]