| gpb.interprete {gpboost} | R Documentation | 
Compute feature contribution of prediction
Description
Computes feature contribution components of rawscore prediction.
Usage
gpb.interprete(model, data, idxset, num_iteration = NULL)
Arguments
| model | object of class  | 
| data | a matrix object or a dgCMatrix object. | 
| idxset | an integer vector of indices of rows needed. | 
| num_iteration | number of iteration want to predict with, NULL or <= 0 means use best iteration. | 
Value
For regression, binary classification and lambdarank model, a list of data.table
with the following columns:
- Feature: Feature names in the model.
- Contribution: The total contribution of this feature's splits.
For multiclass classification, a list of data.table with the Feature column and
Contribution columns to each class.
Examples
Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "gpboost")
train <- agaricus.train
dtrain <- gpb.Dataset(train$data, label = train$label)
setinfo(dtrain, "init_score", rep(Logit(mean(train$label)), length(train$label)))
data(agaricus.test, package = "gpboost")
test <- agaricus.test
params <- list(
    objective = "binary"
    , learning_rate = 0.1
    , max_depth = -1L
    , min_data_in_leaf = 1L
    , min_sum_hessian_in_leaf = 1.0
)
model <- gpb.train(
    params = params
    , data = dtrain
    , nrounds = 3L
)
tree_interpretation <- gpb.interprete(model, test$data, 1L:5L)
[Package gpboost version 1.5.1.1 Index]