Easy Data Wrangling and Statistical Transformations


[Up] [Top]

Documentation for package ‘datawizard’ version 0.12.2

Help Pages

A C D E F G K L M N P R S T U V W

-- A --

adjust Adjust data for the effect of other variable(s)
as.data.frame.datawizard_tables Create frequency and crosstables of variables
assign_labels Assign variable and value labels
assign_labels.data.frame Assign variable and value labels
assign_labels.numeric Assign variable and value labels

-- C --

categorize Recode (or "cut" / "bin") data into groups of values.
categorize.data.frame Recode (or "cut" / "bin") data into groups of values.
categorize.numeric Recode (or "cut" / "bin") data into groups of values.
center Centering (Grand-Mean Centering)
center.data.frame Centering (Grand-Mean Centering)
center.numeric Centering (Grand-Mean Centering)
centre Centering (Grand-Mean Centering)
change_code Recode old values of variables into new values
change_scale Rescale Variables to a New Range
coef_var Compute the coefficient of variation
coef_var.numeric Compute the coefficient of variation
coerce_to_numeric Convert to Numeric (if possible)
colnames_to_row Tools for working with column names
column_as_rownames Tools for working with row names or row ids
contr.deviation Deviation Contrast Matrix
convert_na_to Replace missing values in a variable or a data frame.
convert_na_to.character Replace missing values in a variable or a data frame.
convert_na_to.data.frame Replace missing values in a variable or a data frame.
convert_na_to.numeric Replace missing values in a variable or a data frame.
convert_to_na Convert non-missing values in a variable into missing values.
convert_to_na.data.frame Convert non-missing values in a variable into missing values.
convert_to_na.factor Convert non-missing values in a variable into missing values.
convert_to_na.numeric Convert non-missing values in a variable into missing values.

-- D --

data_addprefix Rename columns and variable names
data_addsuffix Rename columns and variable names
data_adjust Adjust data for the effect of other variable(s)
data_arrange Arrange rows by column values
data_codebook Generate a codebook of a data frame.
data_duplicated Extract all duplicates
data_extract Extract one or more columns or elements from an object
data_extract.data.frame Extract one or more columns or elements from an object
data_filter Return filtered or sliced data frame, or row indices
data_find Find or get columns in a data frame based on search patterns
data_group Create a grouped data frame
data_join Merge (join) two data frames, or a list of data frames
data_match Return filtered or sliced data frame, or row indices
data_merge Merge (join) two data frames, or a list of data frames
data_merge.data.frame Merge (join) two data frames, or a list of data frames
data_merge.list Merge (join) two data frames, or a list of data frames
data_modify Create new variables in a data frame
data_modify.data.frame Create new variables in a data frame
data_partition Partition data
data_peek Peek at values and type of variables in a data frame
data_peek.data.frame Peek at values and type of variables in a data frame
data_read Read (import) data files from various sources
data_relocate Relocate (reorder) columns of a data frame
data_remove Relocate (reorder) columns of a data frame
data_rename Rename columns and variable names
data_rename_rows Rename columns and variable names
data_reorder Relocate (reorder) columns of a data frame
data_replicate Expand (i.e. replicate rows) a data frame
data_restoretype Restore the type of columns according to a reference data frame
data_rotate Rotate a data frame
data_seek Find variables by their names, variable or value labels
data_select Find or get columns in a data frame based on search patterns
data_separate Separate single variable into multiple variables
data_summary Summarize data
data_summary.data.frame Summarize data
data_tabulate Create frequency and crosstables of variables
data_tabulate.data.frame Create frequency and crosstables of variables
data_tabulate.default Create frequency and crosstables of variables
data_to_long Reshape (pivot) data from wide to long
data_to_wide Reshape (pivot) data from long to wide
data_transpose Rotate a data frame
data_ungroup Create a grouped data frame
data_unique Keep only one row from all with duplicated IDs
data_unite Unite ("merge") multiple variables
data_write Read (import) data files from various sources
degroup Compute group-meaned and de-meaned variables
demean Compute group-meaned and de-meaned variables
describe_distribution Describe a distribution
describe_distribution.data.frame Describe a distribution
describe_distribution.factor Describe a distribution
describe_distribution.numeric Describe a distribution
detrend Compute group-meaned and de-meaned variables
distribution_coef_var Compute the coefficient of variation
distribution_cv Compute the coefficient of variation
distribution_mode Compute mode for a statistical distribution

-- E --

efc Sample dataset from the EFC Survey
empty_columns Return or remove variables or observations that are completely missing
empty_rows Return or remove variables or observations that are completely missing
extract_column_names Find or get columns in a data frame based on search patterns

-- F --

find_columns Find or get columns in a data frame based on search patterns
format_text Convenient text formatting functionalities

-- G --

get_columns Find or get columns in a data frame based on search patterns

-- K --

kurtosis Compute Skewness and (Excess) Kurtosis
kurtosis.numeric Compute Skewness and (Excess) Kurtosis

-- L --

labels_to_levels Convert value labels into factor levels
labels_to_levels.data.frame Convert value labels into factor levels
labels_to_levels.factor Convert value labels into factor levels

-- M --

makepredictcall.dw_transformer Utility Function for Safe Prediction with 'datawizard' transformers
means_by_group Summary of mean values by group
means_by_group.data.frame Summary of mean values by group
means_by_group.numeric Summary of mean values by group
mean_sd Summary Helpers
median_mad Summary Helpers

-- N --

nhanes_sample Sample dataset from the National Health and Nutrition Examination Survey
normalize Normalize numeric variable to 0-1 range
normalize.data.frame Normalize numeric variable to 0-1 range
normalize.numeric Normalize numeric variable to 0-1 range

-- P --

print.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
print.parameters_skewness Compute Skewness and (Excess) Kurtosis
print_html.data_codebook Generate a codebook of a data frame.

-- R --

ranktransform (Signed) rank transformation
ranktransform.data.frame (Signed) rank transformation
ranktransform.numeric (Signed) rank transformation
recode_into Recode values from one or more variables into a new variable
recode_values Recode old values of variables into new values
recode_values.data.frame Recode old values of variables into new values
recode_values.numeric Recode old values of variables into new values
remove_empty Return or remove variables or observations that are completely missing
remove_empty_columns Return or remove variables or observations that are completely missing
remove_empty_rows Return or remove variables or observations that are completely missing
replace_nan_inf Convert infinite or 'NaN' values into 'NA'
rescale Rescale Variables to a New Range
rescale.data.frame Rescale Variables to a New Range
rescale.numeric Rescale Variables to a New Range
rescale_weights Rescale design weights for multilevel analysis
reshape_ci Reshape CI between wide/long formats
reshape_longer Reshape (pivot) data from wide to long
reshape_wider Reshape (pivot) data from long to wide
reverse Reverse-Score Variables
reverse.data.frame Reverse-Score Variables
reverse.numeric Reverse-Score Variables
reverse_scale Reverse-Score Variables
rowid_as_column Tools for working with row names or row ids
rownames_as_column Tools for working with row names or row ids
row_means Row means (optionally with minimum amount of valid values)
row_to_colnames Tools for working with column names

-- S --

skewness Compute Skewness and (Excess) Kurtosis
skewness.numeric Compute Skewness and (Excess) Kurtosis
slide Shift numeric value range
slide.data.frame Shift numeric value range
slide.numeric Shift numeric value range
smoothness Quantify the smoothness of a vector
standardise Standardization (Z-scoring)
standardize Standardization (Z-scoring)
standardize.data.frame Standardization (Z-scoring)
standardize.default Re-fit a model with standardized data
standardize.factor Standardization (Z-scoring)
standardize.numeric Standardization (Z-scoring)
standardize_models Re-fit a model with standardized data
summary.parameters_kurtosis Compute Skewness and (Excess) Kurtosis
summary.parameters_skewness Compute Skewness and (Excess) Kurtosis

-- T --

text_concatenate Convenient text formatting functionalities
text_format Convenient text formatting functionalities
text_fullstop Convenient text formatting functionalities
text_lastchar Convenient text formatting functionalities
text_paste Convenient text formatting functionalities
text_remove Convenient text formatting functionalities
text_wrap Convenient text formatting functionalities
to_factor Convert data to factors
to_factor.data.frame Convert data to factors
to_factor.numeric Convert data to factors
to_numeric Convert data to numeric
to_numeric.data.frame Convert data to numeric

-- U --

unnormalize Normalize numeric variable to 0-1 range
unnormalize.data.frame Normalize numeric variable to 0-1 range
unnormalize.grouped_df Normalize numeric variable to 0-1 range
unnormalize.numeric Normalize numeric variable to 0-1 range
unstandardise Standardization (Z-scoring)
unstandardize Standardization (Z-scoring)
unstandardize.data.frame Standardization (Z-scoring)
unstandardize.numeric Standardization (Z-scoring)

-- V --

visualisation_recipe Prepare objects for visualisation

-- W --

weighted_mad Weighted Mean, Median, SD, and MAD
weighted_mean Weighted Mean, Median, SD, and MAD
weighted_median Weighted Mean, Median, SD, and MAD
weighted_sd Weighted Mean, Median, SD, and MAD
winsorize Winsorize data
winsorize.numeric Winsorize data