A C D E F G K L M N P R S T U V W
adjust | Adjust data for the effect of other variable(s) |
as.data.frame.datawizard_tables | Create frequency and crosstables of variables |
assign_labels | Assign variable and value labels |
assign_labels.data.frame | Assign variable and value labels |
assign_labels.numeric | Assign variable and value labels |
categorize | Recode (or "cut" / "bin") data into groups of values. |
categorize.data.frame | Recode (or "cut" / "bin") data into groups of values. |
categorize.numeric | Recode (or "cut" / "bin") data into groups of values. |
center | Centering (Grand-Mean Centering) |
center.data.frame | Centering (Grand-Mean Centering) |
center.numeric | Centering (Grand-Mean Centering) |
centre | Centering (Grand-Mean Centering) |
change_code | Recode old values of variables into new values |
change_scale | Rescale Variables to a New Range |
coef_var | Compute the coefficient of variation |
coef_var.numeric | Compute the coefficient of variation |
coerce_to_numeric | Convert to Numeric (if possible) |
colnames_to_row | Tools for working with column names |
column_as_rownames | Tools for working with row names or row ids |
contr.deviation | Deviation Contrast Matrix |
convert_na_to | Replace missing values in a variable or a data frame. |
convert_na_to.character | Replace missing values in a variable or a data frame. |
convert_na_to.data.frame | Replace missing values in a variable or a data frame. |
convert_na_to.numeric | Replace missing values in a variable or a data frame. |
convert_to_na | Convert non-missing values in a variable into missing values. |
convert_to_na.data.frame | Convert non-missing values in a variable into missing values. |
convert_to_na.factor | Convert non-missing values in a variable into missing values. |
convert_to_na.numeric | Convert non-missing values in a variable into missing values. |
data_addprefix | Rename columns and variable names |
data_addsuffix | Rename columns and variable names |
data_adjust | Adjust data for the effect of other variable(s) |
data_arrange | Arrange rows by column values |
data_codebook | Generate a codebook of a data frame. |
data_duplicated | Extract all duplicates |
data_extract | Extract one or more columns or elements from an object |
data_extract.data.frame | Extract one or more columns or elements from an object |
data_filter | Return filtered or sliced data frame, or row indices |
data_find | Find or get columns in a data frame based on search patterns |
data_group | Create a grouped data frame |
data_join | Merge (join) two data frames, or a list of data frames |
data_match | Return filtered or sliced data frame, or row indices |
data_merge | Merge (join) two data frames, or a list of data frames |
data_merge.data.frame | Merge (join) two data frames, or a list of data frames |
data_merge.list | Merge (join) two data frames, or a list of data frames |
data_modify | Create new variables in a data frame |
data_modify.data.frame | Create new variables in a data frame |
data_partition | Partition data |
data_peek | Peek at values and type of variables in a data frame |
data_peek.data.frame | Peek at values and type of variables in a data frame |
data_read | Read (import) data files from various sources |
data_relocate | Relocate (reorder) columns of a data frame |
data_remove | Relocate (reorder) columns of a data frame |
data_rename | Rename columns and variable names |
data_rename_rows | Rename columns and variable names |
data_reorder | Relocate (reorder) columns of a data frame |
data_replicate | Expand (i.e. replicate rows) a data frame |
data_restoretype | Restore the type of columns according to a reference data frame |
data_rotate | Rotate a data frame |
data_seek | Find variables by their names, variable or value labels |
data_select | Find or get columns in a data frame based on search patterns |
data_separate | Separate single variable into multiple variables |
data_summary | Summarize data |
data_summary.data.frame | Summarize data |
data_tabulate | Create frequency and crosstables of variables |
data_tabulate.data.frame | Create frequency and crosstables of variables |
data_tabulate.default | Create frequency and crosstables of variables |
data_to_long | Reshape (pivot) data from wide to long |
data_to_wide | Reshape (pivot) data from long to wide |
data_transpose | Rotate a data frame |
data_ungroup | Create a grouped data frame |
data_unique | Keep only one row from all with duplicated IDs |
data_unite | Unite ("merge") multiple variables |
data_write | Read (import) data files from various sources |
degroup | Compute group-meaned and de-meaned variables |
demean | Compute group-meaned and de-meaned variables |
describe_distribution | Describe a distribution |
describe_distribution.data.frame | Describe a distribution |
describe_distribution.factor | Describe a distribution |
describe_distribution.numeric | Describe a distribution |
detrend | Compute group-meaned and de-meaned variables |
distribution_coef_var | Compute the coefficient of variation |
distribution_cv | Compute the coefficient of variation |
distribution_mode | Compute mode for a statistical distribution |
efc | Sample dataset from the EFC Survey |
empty_columns | Return or remove variables or observations that are completely missing |
empty_rows | Return or remove variables or observations that are completely missing |
extract_column_names | Find or get columns in a data frame based on search patterns |
find_columns | Find or get columns in a data frame based on search patterns |
format_text | Convenient text formatting functionalities |
get_columns | Find or get columns in a data frame based on search patterns |
kurtosis | Compute Skewness and (Excess) Kurtosis |
kurtosis.numeric | Compute Skewness and (Excess) Kurtosis |
labels_to_levels | Convert value labels into factor levels |
labels_to_levels.data.frame | Convert value labels into factor levels |
labels_to_levels.factor | Convert value labels into factor levels |
makepredictcall.dw_transformer | Utility Function for Safe Prediction with 'datawizard' transformers |
means_by_group | Summary of mean values by group |
means_by_group.data.frame | Summary of mean values by group |
means_by_group.numeric | Summary of mean values by group |
mean_sd | Summary Helpers |
median_mad | Summary Helpers |
nhanes_sample | Sample dataset from the National Health and Nutrition Examination Survey |
normalize | Normalize numeric variable to 0-1 range |
normalize.data.frame | Normalize numeric variable to 0-1 range |
normalize.numeric | Normalize numeric variable to 0-1 range |
print.parameters_kurtosis | Compute Skewness and (Excess) Kurtosis |
print.parameters_skewness | Compute Skewness and (Excess) Kurtosis |
print_html.data_codebook | Generate a codebook of a data frame. |
ranktransform | (Signed) rank transformation |
ranktransform.data.frame | (Signed) rank transformation |
ranktransform.numeric | (Signed) rank transformation |
recode_into | Recode values from one or more variables into a new variable |
recode_values | Recode old values of variables into new values |
recode_values.data.frame | Recode old values of variables into new values |
recode_values.numeric | Recode old values of variables into new values |
remove_empty | Return or remove variables or observations that are completely missing |
remove_empty_columns | Return or remove variables or observations that are completely missing |
remove_empty_rows | Return or remove variables or observations that are completely missing |
replace_nan_inf | Convert infinite or 'NaN' values into 'NA' |
rescale | Rescale Variables to a New Range |
rescale.data.frame | Rescale Variables to a New Range |
rescale.numeric | Rescale Variables to a New Range |
rescale_weights | Rescale design weights for multilevel analysis |
reshape_ci | Reshape CI between wide/long formats |
reshape_longer | Reshape (pivot) data from wide to long |
reshape_wider | Reshape (pivot) data from long to wide |
reverse | Reverse-Score Variables |
reverse.data.frame | Reverse-Score Variables |
reverse.numeric | Reverse-Score Variables |
reverse_scale | Reverse-Score Variables |
rowid_as_column | Tools for working with row names or row ids |
rownames_as_column | Tools for working with row names or row ids |
row_means | Row means (optionally with minimum amount of valid values) |
row_to_colnames | Tools for working with column names |
skewness | Compute Skewness and (Excess) Kurtosis |
skewness.numeric | Compute Skewness and (Excess) Kurtosis |
slide | Shift numeric value range |
slide.data.frame | Shift numeric value range |
slide.numeric | Shift numeric value range |
smoothness | Quantify the smoothness of a vector |
standardise | Standardization (Z-scoring) |
standardize | Standardization (Z-scoring) |
standardize.data.frame | Standardization (Z-scoring) |
standardize.default | Re-fit a model with standardized data |
standardize.factor | Standardization (Z-scoring) |
standardize.numeric | Standardization (Z-scoring) |
standardize_models | Re-fit a model with standardized data |
summary.parameters_kurtosis | Compute Skewness and (Excess) Kurtosis |
summary.parameters_skewness | Compute Skewness and (Excess) Kurtosis |
text_concatenate | Convenient text formatting functionalities |
text_format | Convenient text formatting functionalities |
text_fullstop | Convenient text formatting functionalities |
text_lastchar | Convenient text formatting functionalities |
text_paste | Convenient text formatting functionalities |
text_remove | Convenient text formatting functionalities |
text_wrap | Convenient text formatting functionalities |
to_factor | Convert data to factors |
to_factor.data.frame | Convert data to factors |
to_factor.numeric | Convert data to factors |
to_numeric | Convert data to numeric |
to_numeric.data.frame | Convert data to numeric |
unnormalize | Normalize numeric variable to 0-1 range |
unnormalize.data.frame | Normalize numeric variable to 0-1 range |
unnormalize.grouped_df | Normalize numeric variable to 0-1 range |
unnormalize.numeric | Normalize numeric variable to 0-1 range |
unstandardise | Standardization (Z-scoring) |
unstandardize | Standardization (Z-scoring) |
unstandardize.data.frame | Standardization (Z-scoring) |
unstandardize.numeric | Standardization (Z-scoring) |
visualisation_recipe | Prepare objects for visualisation |
weighted_mad | Weighted Mean, Median, SD, and MAD |
weighted_mean | Weighted Mean, Median, SD, and MAD |
weighted_median | Weighted Mean, Median, SD, and MAD |
weighted_sd | Weighted Mean, Median, SD, and MAD |
winsorize | Winsorize data |
winsorize.numeric | Winsorize data |